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Abstract

The brain is a complex system comprising a myriad of interacting elements, posing

significant challenges in understanding its structure, function, and dynamics. Network science

has emerged as a powerful tool for studying such intricate systems, offering a framework for

integrating multiscale data and complexity. Here, we discuss the application of network science

in the study of the brain, addressing topics such as network models and metrics, the

connectome, and the role of dynamics in neural networks. We explore the challenges and

opportunities in integrating multiple data streams for understanding the neural transitions from

development to healthy function to disease, and discuss the potential for collaboration

between network science and neuroscience communities. We underscore the importance of

fostering interdisciplinary opportunities through funding initiatives, workshops, and

conferences, as well as supporting students and postdoctoral fellows with interests in both

disciplines. By uniting the network science and neuroscience communities, we can develop

novel network-based methods tailored to neural circuits, paving the way towards a deeper

understanding of the brain and its functions.

Introduction
During the past two decades, network science has become a vital tool in the study of

complex systems, offering a wide range of analytical and algorithmic techniques to explore the

structure of a complex, interconnected system. Previous reductionist approaches, built upon

decades of empirical research, have focused on the functioning of individual elements while

neglecting how their interactions give rise to emergent aspects of organization. More recently,

network approaches helped map out the interactions between molecules, cells, tissues,

individuals, and organizations. It is becoming clear that we need network theory in

neuroscience to understand how distributed patterns of interactions create function, and to

account for the complexity of integrated systems.

The brain, with its billions of cells connected by synapses, is the ultimate example of a

complex system that cannot be understood through the study of individual components alone.



In order to unveil the neural basis of complex behaviors and functions such as perception,

movement, cognition, memory, and emotion, we must acknowledge and catalog the

interactions between the neurons, allowing us to integrate multiple levels of observations and

apply diverse approaches, including computational and mathematical modeling (Pulvermüller et

al. 2021; Bassett, Zurn, and Gold 2018; Fornito, Zalesky, and Breakspear 2015). The goal of this

paper is to outline how network science is not only well-suited, but is necessary to the

integration of our knowledge of individual neurons into a broader understanding of brain

function. Towards this goal, The Kavli Foundation convened a workshop in which participants

began to outline how recent network science techniques can contextualize the emerging wave

of neuroscientific big data, focusing on three topics: neurodevelopment, functional brain data,

and health and disease. Below, we summarize these discussion points and outline opportunities

by which the fields of network science and neuroscience can define common goals and

language.

Techniques

Neuroscience

In the recent past, technical and experimental advancements in neuroscience have

enabled scientists to study the brain at increasingly finer scales, ranging from coarse circuit

analysis to whole-animal, cellular-level neural recording, connectivity mapping, and genetic

profiling. While previous techniques already necessitated the use of graph theoretical tools,

recent data collection methods have started to offer a consistent stream of multi-modal and

high quality connectomic reconstructions that make the use of network science a necessity. For

example, while a connectome of C. elegans has been available since 1986 (White et al. 1986),

recent advances in electron microscopy (Abbott et al. 2020) have produced whole-animal wiring

information in Ciona Intestinalis (Ryan, Lu, and Meinertzhagen 2016) and Platynereis dumerilii

(Verasztó et al. 2020), as well as brain-wide connectivity maps for Drosophila at different stages

of development (Eichler et al. 2017; Scheffer et al. 2020; Winding et al. 2023), along with partial

connectomes for zebrafish (Hildebrand et al. 2017), mice (Microns Consortium et al. 2021), and

humans (Shapson-Coe et al. 2021). Single-cell transcriptomics has also enabled rapid and
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diverse profiling of cellular identity in various animals, developmental stages, and brain health

patterns (Zeng 2022). Additional “bridge” techniques allow for rapid acquisition of multi-modal

datasets, such as spatial transcriptomics (Chen et al. 2019), promising physical and genetic

information of cells from a single measurement. These datasets offer detailed connectivity and

identity information about thousands, and soon millions, of neurons. Analyzing this data, and

extracting experimentally testable signals and hypotheses will be facilitated by integrating all

data points via the use of network science tools, which in turn will also necessitate further

advancement of current tools in network science.

To study functional properties of individual neurons and neural networks in the living

brain, in vivo techniques such as two-photon microscopy (Grienberger and Konnerth 2012) and

multi-unit electrode recording (Steinmetz et al. 2018) provide rapid profiling of local and

mesoscale neuronal activity and anatomy in animal models, revealing principles of circuit

organization and dynamic coding underlying a variety of neural processes in sensory perception,

movement control, decision-making and behavior generation. However, presently the

application of these approaches is largely restricted to one or a few brain regions at a time.

Technology advancement is needed to monitor neuronal activities across multiple brain regions

and at high resolution, necessary to truly understand the dynamic interplay of the different

components of the brain-wide circuits for brain function.

Currently, magnetic resonance imaging (MRI) is the primary technology for noninvasively

recording functioning brain networks in the human brain, either by reconstructing white matter

tracts using diffusion tensor imaging (DTI) or by inferring axonal connectivity through the

measurement of cytoarchitectural or morphometric similarity between brain regions. The rapid

growth of datasets such as the Allen Human Brain Atlas (Hawrylycz et al. 2012) highlights the

need for a wider range of human brain atlases that document gene expression and other

molecular or cellular phenotypes that are commensurate with the structural phenotypes, such

as volume and myelination. We must integrate multiple levels of analysis and apply diverse

approaches, including computational and mathematical modeling, to successfully unravel the

complexity of the brain networks and its many interacting components. Future functional brain
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profiling methods must also account for the multiple cell identities and network features that

define neuronal systems.

Network Science

Traditionally, neural connectivity is modeled as a simple graph, formalizing the brain as a

set of nodes (neurons) connected by links (synapses, gap junctions). Network science is

particularly well-suited to the study of such simple graphs: starting from the adjacency matrix of

the system, encoding who is connected to whom, network science offers a suite of tools to

characterize local and large scale structure, ranging from degree distributions to community

structure, degree correlations, and even controllability, exploring our ability to guide the

dynamics of the circuit. Yet, this “time-frozen” graph-based approach highly oversimplifies the

true complexity of the brain, ignoring cell identities, signaling types, dynamics, and spatial and

energetic constraints that shape this complex organ. Emerging approaches in network science

offer a suite of tools to start capturing this rich complexity, helping us analyze the structural and

functional brain data across scales.

For example, multiplex and multilayer networks provide a framework for understanding

and describing cell-cell relationships and hierarchies, capturing the circuit motifs that can

significantly impact the dynamical and topological properties of functional networks. Indeed,

multiplex networks can represent multiple types of connections, such as synapses, gap

junctions, neuromodulators, and circulating gut peptides, within a formal framework (Presigny

and De Vico Fallani 2022; Bianconi 2018). Triadic interactions, in which a node affects the

https://paperpile.com/c/uh5IRg/QUgaX+X7LIB
https://paperpile.com/c/uh5IRg/QUgaX+X7LIB


interaction between two other nodes, can also be incorporated, capturing for example how glia

can influence the synaptic signal between neurons (Sun et al. 2023). These triadic interactions

can lead to the emergence of higher-order networks, often represented as hypergraphs or

simplicial complexes (Bianconi 2021; Battiston et al. 2020, 2021; Torres et al. 2021). Promise

Theory furthers network analysis by incorporating complex agent modeling and conditional

linkage, process interconnection language, and accounting for the functional and structural

diversity of cells and their roles (Burgess 2021, 2015).

Finally, traditional network-based analyses of the brain have largely ignored the

geometry and morphology of neurons, treating them as point-like nodes rather than physical

objects with length, volume, and a branching tree structure. At larger scales, numerous network

models have attempted to incorporate the physical dimension or geometry of extended neural

networks, through considerations of wiring economy (Horvát et al. 2016; Markov et al. 2013),

metabolic cost, and conduction delays (Bullmore and Sporns 2012). The emerging study of

physical networks promises the tools to explore how the physicality and the spatial organization

of the individual neurons and the non-crossing constraints affect the network structure of the

whole brain (Pósfai et al. 2022). These approaches have the potential to address the metabolic

cost of building and maintaining wiring, and incorporate the physical length of connections.

There is a real need, for both network science and neuroscience, to go beyond simple

connectivity information and incorporate the true physical nature of neurons, informed by

weighing cell properties with their connections, allowing us to enrich our understanding of

neuronal circuit operations.

Application Areas

Neurodevelopment

System neuroscience and genomics have relied on a fruitful collaboration between

theory and experiment. However, a similar symbiosis has so far escaped neurodevelopment.

Neurodevelopment has strong core principles, ripe for modeling, empowered by the recent

availability of rich connectomics, genomics and imaging datasets, from which computational

https://paperpile.com/c/uh5IRg/psJL
https://paperpile.com/c/uh5IRg/THYiv+bYUrm+ez2YO+GFN0Q
https://paperpile.com/c/uh5IRg/I2PBL+eu7ai
https://paperpile.com/c/uh5IRg/1lni+B003
https://paperpile.com/c/uh5IRg/igwL5
https://paperpile.com/c/uh5IRg/oPTYf


and network-based analyses can unleash rich insights. For instance, in addition to whole-body

behavior and neural recordings, C. elegans now has developmentally resolved connectomes and

transcriptomes (Boeck et al. 2016; Witvliet et al. 2021), allowing for the integrated analysis of

connectivity, genetics, activity and behavior, inspiring the ongoing acquisition of similar datasets

for larger organisms. The main use of network tools in brain science has so far been limited to

the mapping and analysis of static network maps. However, a key discovery of network science

is that we must understand the regularities and rules governing the growth and assembly of

networks, i.e., the evolving topology of their connectivity, to understand the origin of the

empirically observed network characteristics (Barabasi and Albert 1999). Network science offers

important tools to address this gap, and hence can provide a comprehensive quantitative

framework to study and understand neurodevelopment. It offers the formal language to

describe, and then to analyze, how the emerging cell identity and its physical instantiation leads

to the observed connectivity relationships in the brain and ultimately shapes their impact on

brain function. Reciprocally, new insights from biological systems that first establish and then

prune structured networks may inspire new network approaches (Woźniak et al. 2020).

One central question in this field is how neuron identity, captured by gene expression

profiles, location, and shape, determines the wiring patterns of neurons and leads to

stereotyped connectivity and behavior. Network models of neurodevelopmental principles are

needed, therefore, to validate hypotheses and make predictions for future experiments. For

instance, Roger Sperry’s hypothesis that genetic compatibility drives neuronal connectivity,

helped infer the protein interactions that underlie connectivity in C. elegans (Barabási and

Barabási 2020; Kovács, Barabási, and Barabási 2020) and in the Drosophila visual system

(Kurmangaliyev et al. 2020). These models are most successful when they take into account the

affordances of the niche in which organisms operate, including noise from data collection

limitations and spatial restrictions, offering more accurate descriptions of the complex

landscape of neuronal circuit construction.

Further work on cell migration, morphogenesis and axon guidance can help unveil the

developmental constraints that lead to specific circuit implementations and overall network

assembly. For example, the preconfigured dynamics of the hippocampus have been shown to be
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influenced by factors such as embryonic birthdate and neurogenesis rate (Huszár et al. 2022).

Additionally, it is now known that certain network features, including heavy-tailed degree

distributions, modularity, and interconnected hubs, are present across species and scales in the

brain (van den Heuvel, Bullmore, and Sporns 2016; Buzsáki and Mizuseki 2014; Towlson et al.

2013). One potential explanation for the conservation of these features is the existence of

universal constraints on the brain’s physical architecture that arise from the trade-off between

the cost of development, physical constraints and coding efficiency. In this context, it is likely

that high-cost components, such as long-distance inter-modular tracts, are topologically

integrative in order to minimize the transmission time of signals between spatially distant brain

regions (Bullmore and Sporns 2012). Further research in this area has the potential to improve

our understanding of the development and organization of the brain, with potential implications

for the diagnosis and treatment of neurological disorders, as we discuss later.

Figure 1: Multi-scale interaction in network development, function and disease.
Development: Neural connectivity emerges as a function of cell identity, linking network dynamics across
modalities and scales. Regulatory networks (top left) underlie cell differentiation, and protein-protein
interactions guide morphological maturation and synaptic specificity (top right).
Function: Structural connectivity guides the emergent possibilities of functional networks, determining the
strength with which one neuron can influence the next (bottom).
Disease: In a diseased state, failures at multiple network levels leads to perturbed function. Genetic
mutations cause disruptions in gene regulatory networks (top left), as well as conformation changes that
change protein-protein interactions (top right), potentially leading to loss of synaptic connectivity (dashed
neurites). In turn, reduced connection strength between neurons disruptions activity propagation (bottom),
providing links between genetic changes and cognitive dysfunction.
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Brains are Networks that Do

In technological networks such as the Internet or a computer chip, structure and

function are carefully separated: information is encoded into the signal, hence the role of the

network is only to guarantee routing paths between nodes. In the brain, however, action

potentials do not encode information in isolation. Instead, the brain relies on population coding,

meaning that encoding is implemented by the patterns of signals generated by multiple physical

networks of connections. Thus, monitoring and quantifying this network structure is critical for

understanding how neuronal coding achieves information processing. This makes the structure

of the network more than a propagation backbone; it becomes an integral part of the algorithm

itself (Molnár et al. 2020). Thus, the connectome cannot be understood divorced from the

context of the actions it performs. Hence, the modules, metrics, and generative processes that

support robust representation are needed to be integrated with the structural representation.

While many recent studies have revealed ways in which task structures are reflected in

the networks of neural representations (Chung and Abbott 2021), little work has been done to

elucidate how such representational geometries arise mechanistically and dynamically. Future

research should aim to unveil how connectivity patterns at multiple scales influence the

population-level representational geometry, and how this leads to the implementation of

behaviorally relevant task structures. For instance, hippocampal "cognitive maps" that support

reasoning in different encountered task spaces have a natural extension to network formalism:

each behavioral state can be a node, and possible transitions between states are edges (Muller

1996; Eichenbaum and Cohen 2004; Stachenfeld, Botvinick, and Gershman 2017; George et al.

2021), a representation that can be extended to the challenge of inducing latent networks from

sequential inputs (Raju et al. 2022). Further, we must account for the dual dynamics present in

the brain: network connectivity defines the possible functions that can be supported. In the

reverse direction, the functional dynamics of the network allows synapses to form and change,

allowing dynamics (activity) to change the connectivity of the underlying networks

(Papadimitriou et al. 2020). Important insights into brain function can be revealed when

dynamics taking place at the node level (single neurons, brain regions) are integrated with

dynamics taking place on links (synaptic signals, edge signals) (Faskowitz, Betzel, and Sporns
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2022) or on higher-order motifs (Santoro et al. 2023) which are driven by the network cyclic

structure and its higher-order topology (Millán, Torres, and Bianconi 2020). For instance,

studying symmetrical complexes, such as automorphisms (Morone and Makse 2019) and

fibrations (Morone, Leifer, and Makse 2020), in structural and functional neural connectivities

has succeeded in unveiling the building blocks for neural synchronization in the brain. Graph

neural networks (Battaglia et al. 2018; Bronstein et al. 2021), which combine the benefits of

network topology and machine learning, may also help us relate connectomically constrained

graphs to the neural dynamics that take place over them.

For a brain to carry out the numerous processes it supports, it is expected to

simultaneously control the activity of the individual neurons, as well as the dynamics of

individual circuits and ultimately the full network. This represents an enormously complex

control task, as unveiled by recent advances in network controllability that merged the tools of

control theory and network science (Liu and Barabási 2016). These tools help us identify the

nodes through which one can control a complex neural circuit, just like a car is controlled

through three core mechanisms: the steering wheel, gas pedal and brake. Recent work used

network control to predict the function of individual neurons in the C. elegans connectome,

leading to the discovery of new neurons involved in the control of locomotion, and offering

direct falsifiable experimental confirmation of control principles (Yan et al. 2017). An alternate

description of brain function requires a deeper understanding of the underlying control

problems, which requires simultaneous profiling and understanding of network structure and

dynamics (Stiso et al. 2019; Tang and Bassett 2018).

Finally, machine learning methods have offered a unique approach for linking network

structure to task performance (Veličković 2023; Chami et al. 2020), allowing for rapid profiling

of learning and behavior that can later inform how we query biological learning (Marblestone,

Wayne, and Kording 2016; Vu et al. 2018; Richards et al. 2019). To move forward, we must study

the statistics of AI architecture’s weight structures that offer high performance on complex

tasks, helping identify powerful subnetworks, or “winning tickets,” responsible for the majority

of the performance of a system. An alternative approach lies in identifying generative processes

that produce highly performing networks. This is inspired by innate behaviors: animals arrive
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into the world with a set of evolution-tested preexisting dynamics, implying an optimized set of

developmental processes that yield a fine-tuned functional connectome at birth (Zador 2019;

Barabási, Schuhknecht, and Engert 2022). This process, termed the “genomic bottleneck,” has

the potential to greatly increase the flexibility and utility of AI systems (Koulakov et al. 2022).

Indeed, developmentally inspired encodings of neural network weights have already shown

high and stable performance on reinforcement learning, metalearning and transfer learning

tasks (Barabási, Beynon, and Katona 2022).

Further work in these directions would require streamlined integrations of powerful

circuits identified in the connectome with machine learning systems. A major barrier lies in the

complexity of the initial setup of tasks that the networks are asked to learn (Seshadhri et al.

2020), embedded in complex packages like the simulated physics environment of Mujoco

(Todorov, Erez, and Tassa 2012). It is also challenging to provide custom topologies or weights to

current machine learning packages, thereby moving past the standard feed-forward, layered

architectures. Addressing these challenges would allow the network science toolkit to define a

systematic search of network priors in machine learning, thereby modeling the

neuroevolutionary processes and neurodevelopmental solutions responsible for biological

intelligence.

Health and Disease

The integration of multiple data streams is crucial for understanding the neural

transitions from a healthy state to a disease state, particularly in the context of brain disorders,

diseases, and mental illnesses, often rooted in the early years of life. Large-scale MRI datasets

have allowed for the modeling of normative trajectories of brain development (Bethlehem et al.

2022), however, major opportunities remain for network science to reveal the causes and

physiologies of brain disorders through population analyses.

In addition to the brain's own internal networks, the connections between the brain and

other organs robustly affect neural development and function. Complex interactions have been

revealed in the gut-brain axis, where microbiota can modulate immune and neural states, as

well as in the brain’s interaction with the reproductive system, driving intricate fluctuations in
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levels of sex hormones during puberty, menopause, and pregnancy (Pritschet et al. 2020;

Andreano et al. 2018). Overall, the connections between the brain and other organs can have

significant effects on neural development and function, highlighting the importance of a holistic

exploration of neural networks together with the body as a whole (Buzsáki and Tingley 2023).

Ultimately, to diagnose and treat disease, we must understand the complex interactions

between genetic, disease, and drug networks and their impact on the connectome. Toward that

goal, Network Neuroscience must partner with Network Medicine, which applies network

science to subcellular interactions, aiming to diagnose, prevent, and treat diseases. This need is

reinforced by studies that have found that high degree hubs, located mainly in dorsolateral

prefrontal, lateral and medial temporal, and cingulate areas of human cortex, are co-located

with an enrichment of neurodevelopmental and neurotransmitter-related genes and implicated

in the pathogenesis of schizophrenia (Morgan et al. 2019). Network Medicine takes advantage

of the structure of subcellular networks, as captured by experimentally mapped protein and

noncoding interactions, to identify disease mechanisms, therapeutic targets, drug-repurposing

opportunities, and biomarkers. In the case of brain diseases, mutations and other molecular

changes that alter the subcellular networks within neurons and non-neuronal cells, in turn

affect the wiring and rewiring of the connectome and neural dynamics. Hence, effective

interventions and treatments for brain disorders must confront the double network problem,

accounting for the impact of changes in the subcellular network on connectivity and ultimately

brain function.

Conclusions

Major funding directives, like the public-private funding alliance of the US BRAIN

Initiative, have significantly advanced the development of technologies for studying the brain

across scales and modalities. Yet, the massive amount of data produced and expected to

emerge from these tools have created a complexity bottleneck. We need guiding frameworks to

organize and conceptualize these data, leading to falsifiable hypotheses. Network science offers

a natural match for this task, with the potential for integrating complexity across cell identities,
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signaling types, dynamics, and spatial and energetic constraints that shape brain development,

function and disease.

We need the joint engagement of network scientists and neuroscientists, to develop

novel network-based methods tailored to brain science, in order to address the unique priorities

and challenges posed by brain research. Network-based methods will need to account for the

dynamic nature of connections in the brain, which are continually changing as a result of various

factors such as experience, aging, and disease, as well as incomplete or uncertain

reconstructions of brain connectivity. Continued advances in neuroscience have opened up

exciting possibilities for a deeper understanding of the brain and its function, and now require

network science to capture the dynamics of this complex system with the goals of unlocking

how neural identity, dynamics, behavior and disease all link together.

These methodological advances can run parallel to ever-increasing efforts towards

adoption of open-science practices such as data and code sharing. Such efforts bring new

challenges related to reproducibility, and have, in some cases, resulted in examples of findings

that fail to replicate (Open Science Collaboration 2015; Errington et al. 2021) or exhibit

substantial variability attributable to software (Botvinik-Nezer et al. 2020; Bowring, Maumet,

and Nichols 2019) or analysis teams (Botvinik-Nezer et al. 2020). As a discipline, neuroimaging

has championed open science initiatives, promoting practices including detailed methodological

descriptions and sharing of data and code used to generate results in a publication (Nichols et

al. 2016), and even multiverse analyses that consider all plausible analytical variations (Dafflon

et al. 2022).

To achieve these goals, there is a need to facilitate greater interaction between the

network science and neuroscience communities. A well-tested way is to offer interdisciplinary

grants from public and private organizations, such as The Kavli Foundation, the NIH and the NSF,

that focus on developing network tools for emerging neuroscience technologies and questions,

as well as support for students and postdoctoral fellows with interests in both disciplines. These

grants could also support workshops and conferences that bring together researchers from both

fields, and provide funding for coursework in network neuroscience at the undergraduate and

graduate levels. Actively fostering collaboration between these two fields will encourage the
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development of integrative approaches to understanding biological data, a necessary step

towards advancing our understanding of the brain and its functions.
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