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The integrity and functionality of many real-world complex systems hinge on a small set of pivotal nodes,
or influencers. In different contexts, these influencers are defined as either structurally important nodes
that maintain the connectivity of networks, or dynamically crucial units that can disproportionately impact
certain dynamical processes. In practice, identification of the optimal set of influencers in a given system
has profound implications in a variety of disciplines. In this review, we survey recent advances in the study
of influencer identification developed from different perspectives, and present state-of-the-art solutions
designed for different objectives. In particular, we first discuss the problem of finding the minimal number
of nodes whose removal would breakdown the network (i.e. the optimal percolation or network dismantle
problem), and then survey methods to locate the essential nodes that are capable of shaping global dynam-
ics with either continuous (e.g. independent cascading models) or discontinuous phase transitions (e.g.
threshold models). We conclude the review with a summary and an outlook.

Keywords: influencer identification; spreading dynamics; optimal percolation; k-core percolation; threshold
models.

1. Introduction

A wide variety of phenomena in nature and society can be unified under the umbrella of dynamical
complex systems. Important social and biological processes such as epidemic outbreaks in population
[1], information diffusion in social media [2], signal transmission in brain networks [3] and dynamical
evolution of ecosystems [4] all boil down to interactions among large numbers of building units of each
system, and therefore can be properly described by dynamical models in complex networks [5–8]. In these
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2 S. PEI ET AL.

(a) (b)

Fig. 1. Simulations of epidemic processes initiated from different origins. We use a susceptible-infected-removed (SIR) model
to simulate epidemic outbreaks in a patient-to-patient contact network from multiple Swedish hospitals [18]. Given the same set
of epidemiological parameters (infectious rate β = 0.01 and recover rate μ = 1), outbreaks initiated from two origins have
dramatically different outcomes. In (a) and (b), the epidemic sources have the same number of connections, but the source in (a)
locates in a more central region with a higher k-core index. The colour of each node indicates the probability of infection during
1,000 independent realizations of the SIR model.

systems, complex interactions at microscopic scale lead to the abundant dynamical behaviours we observe
at macroscopic level. As a result, understanding how network structure impacts the function of dynamical
complex systems becomes a central topic in modern network science.

In network science, it has been well established that the collective dynamics of complex systems can
be shaped by a small number of essential nodes, or influencers. For example, opinion leaders in social
media are capable of influencing the public viewpoint on certain trending topics [9]; critical regions in
brain are essential in the formation of memory networks [3, 10–12]; and keystone species in ecology
are responsible for the integrity and stability of ecosystems [13–16]. Numerical simulations of epidemic
processes have also demonstrated that the location of epidemic origin is critical for the final outbreak
size [17] (see Fig. 1 for an example).

In general, influencers can be vaguely defined as the nodes that are disproportionately ‘important’
to the function of complex systems. However, in a given context, influencers may have a more specific
definition: in social networks, influencers are opinion leaders who can influence a large number of
people; in brain networks, influencers are important regions that maintain the connection across different
functional parts; in ecological systems, influencers are keystone species whose extinction would collapse
the network; and in epidemic spreading, influencers are superspreaders who transmit infectious diseases to
a large population. In previous studies, abundant works exist dedicated to explore how to find influencers
in a specific system. (For instance, in social science, various centrality measures have been developed
to rank users’ importance in social networks [19].) Due to its vast scope, here we do not attempt to
summarize all relevant works, but instead focus on two important problems with wide applications.

• First, how to find the structural influencers whose removal would fragment the network? This problem,
named optimal percolation [20] or network dismantle [21], is purely structural and does not involve
with dynamical processes.
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INFLUENCER IDENTIFICATION IN DYNAMICAL COMPLEX SYSTEMS 3

• Second, how to find the dynamical influencers who can lead to the largest cascading following a
spread model? This problem, named influence maximization [22], depends on both network structure
and dynamical rules.

In our following discussion, we refer to the above two problems uniformly as influencer identification.
The specific definition of influencers is thus context-dependent. Solutions to these two problems can
be applied in real-world applications ranging from maximization of marketing in social networks [22–
24], optimization of immunization campaigns [25–27] to protection of networks under malicious attacks
[28–30].

Real-world dynamical complex systems generally fall into two major classes:

• Systems with only positive interactions. For instance, in online social media, social ties can facilitate
the spread of information among users [9]; in human population, physical contacts may transmit
infectious diseases from person to person [31]; and in mutualistic ecosystems, cooperations between
different species benefit their existence in ecology [32].

• Systems with both positive and negative interactions. For instance, in neural systems, synaptic con-
nections can be either excitatory or inhibitory [33]; in gene regulatory networks, molecular regulators
can activate or inhibit the expression of certain genes [34]; and in ecosystems, both mutualistic and
predator–prey relationships coexist among different species [32].

For systems with only positive interactions, influencer identification can be defined using key topological
structures such as the giant component (GC) [35–37] and k-core [38, 39]. On the contrary, systems with
both positive and negative interactions do not admit the classical definitions of the GC and k-core, so
the influencer identification problem in these systems need to be treated with a different theory. In this
review, we only consider the former case where all links have positive interactions, and the case of
inhibition/activation interactions will be treated elsewhere.

For structural influencer identification, the solution only depends on the network structure. However,
for dynamical influencer identification, spread models can be further divided into two classes with contin-
uous (second order) and discontinuous (first order) phase transitions. In regular percolation process [35]
and ICMs [40], the GC emerges continuously from zero size as links are gradually occupied [41]. In con-
trast, in k-core percolation [42] and threshold models [43], k-core structure with non-zero size can appear
abruptly as more nodes are activated [44, 45]. For these two types of dynamical models, approaches to
find influencers are qualitatively different. We therefore discuss the influencer identification problem for
models with continuous and discontinuous phase transitions separately.

Heuristically, influencers can be selected by picking vital individual spreaders one by one using
a greedy approach, in which the influence of single nodes is estimated via Monte Carlo simulations
[22] or various centrality measures [19]. However, influencer identification is intrinsically an NP-hard
combinatorial optimization problem [22]. Therefore, a collective point of view that considers interactions
among multiple spreaders is required. Recent progresses have translated the influencer identification
problem into other closely related optimization problems such as message passing [46], belief propagation
(BP) [47], optimal percolation [20], optimal decycling [21, 48] and explosive percolation (EP) [49].
These new approaches have enriched our understanding of feasible directions to tackle the influencer
identification problem, and provided a number of sophisticated yet efficient methods that are applicable
to large-scale complex systems. Classical centrality-based approaches have been extensively discussed in
previous literature. As a result, in this survey, we focus on development from other approaches. Readers
who are interested in centralities can find details in Ref. [50–52] and references therein.
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4 S. PEI ET AL.

The article is organized as follows. In Section 2, the GC and k-core structure, on which the influencer
identification problem is defined, are introduced. In this section, we discuss the links between regular
percolation and ICMs, as well as the relationship between k-core percolation and threshold models. In
Section 3, we discuss the progresses in optimal percolation using collective influence (CI), optimal decy-
cling, EP and large deviations of percolation in details. This section summarizes recent developments
in finding the minimal set of nodes to collapse a network, that is, the structural influencer identifi-
cation problem. In Section 4, approaches for models with continuous transitions using greedy search
and message passing are presented. In Section 5, methods developed for threshold models with dis-
continuous transitions are reported. Section 4 and Section 5 survey the methods to solve the dynamical
influencer identification problem, with focus on dynamical models with continuous and discontinu-
ous transitions, respectively. Lastly, we conclude the review with an outlook of further directions in
Section 6.

2. GC and k-core structure

The topological feature of a network can be characterized by important structures such as the GC and
k-core. These concepts are fundamental in defining the problem of influencer identification in various
dynamical processes. In this section, we introduce the regular percolation and k-core percolation pro-
cesses, which are used to define the influencer identification problem, and elucidate their connections
with commonly used spreading models.

2.1 Percolation and ICMs

The connectivity of a network is characterized by the number of nodes in the largest connected component,
or the GC G∞. In the random graph theory established by Paul Erdős and Alfréd Rényi in 1960s [35], the
percolation process describes the emergence of G∞ by gradually increasing the probability of connection
between any pairs of nodes [53]. In its inverse process, the GC G∞ of an initially connected network
collapses as an increasing fraction q of nodes or links are removed. This removal process, termed site
or bond percolation, leads to a continuous phase transition at a critical value of q, above which only
fragmented clusters remain, as shown in Fig. 2(a).

For a network G(V , E)with N = |V | nodes and M = |E| edges, we can use a vector n = (n1, . . . , nN)

to represent the configuration of whether a node i is removed (ni = 0) or not (ni = 1). After the removal
of q = 1 − ∑N

i=1 ni/N fraction of nodes, we define the size of remaining GC G∞(q) as the ratio of the
number of nodes in G∞ to the network size N . In the classical percolation theory [35], nodes are deleted
randomly. At the critical value qrand, G∞ is completely dismantled and becomes negligible compared with
the network size N in a continuous, or second order, phase transition. In thermodynamic limit N → ∞,
we have limq→q−

rand
G∞(q) = 0 and G∞(q) = 0 for q ≥ qrand. In real-world networks, the critical point qrand

upon random attack depends on the heterogeneity of network structure. In particular, using generation
functions, it was proved that for random networks with a given degree distribution P(k), qrand is estimated
by 〈k〉/(〈k2〉−〈k〉), where 〈k〉 = ∑

kP(k) and 〈k2〉 = ∑
k2P(k) are the first and second moments of P(k)

[54]. This estimation predicts an extreme robustness to random attack, that is, qrand ≈ 1, for scale-free
networks with a power law degree distribution P(k) ∝ k−γ , which are ubiquitous in real-world systems
[55, 56]. Later, more accurate estimations using the reciprocal of the largest eigenvalue of the adjacency
matrix and non-backtracking matrix were developed [57, 58].

In random (or regular) percolation, nodes are removed without considering their difference in struc-
tural importance. As a matter of fact, if nodes are removed strategically, G∞ can be destructed well before
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INFLUENCER IDENTIFICATION IN DYNAMICAL COMPLEX SYSTEMS 5

(a) (b)

Fig. 2. Phase transition in percolation process. (a) The continuous transition of the GC size G∞ after the removal of q fraction of
nodes. qrand and qc are the critical values for random and optimal percolation, respectively. Insets show illustrations of a connected
G∞ and fragmented clusters. Red nodes are removed influencers. (b) The discontinuous transition of k-core size |kS | after the
removal of q fraction of nodes. The critical values for random and optimal k-core percolation are marked by qrand and qc. Left inset
shows the k-core of kS = 3. After the removal of the red node, 3-core collapses and only 2-core is left, as shown in the right inset.

the removal of qrand fraction of nodes. For example, G∞ in scale-free networks is extremely vulnerable
to targeted attacks on hubs [28, 29, 59]. The optimized process, deviating from the mean-field dynam-
ics given by classical percolation theory, expedites the collapse of G∞ and reduces the critical value
of q. In statistical physics and network science, a number of works have explored the large deviations
of percolation, that is, the deviations from the mean-field theory of percolation [60–64]. At qrand, there
exist a number of possible configurations n such that G∞(n) = 0. As q decreases, fewer configurations
satisfy G∞(n) = 0, until at qc where only one configuration n∗ exists. Below qc, there is no solution to
G∞(q) = 0. Mathematically, qc = min{q ∈ [0, 1]|G∞(q) = 0}. The optimal percolation, or network
dismantle problem is to find the unique configuration n∗ corresponding to the minimal qc, and influencers
are the nodes with ni = 0 [20]. We note that the general framework of large deviations of percolation
includes the optimal percolation problem as an extremal case [60, 63].

By definition, percolation process concerns the pure structural integrity of networks. Nevertheless, a
class of spreading dynamics can be mapped to percolation process and therefore studied using percolation
theory. One of these dynamics is described by independent cascade models (ICMs) [1, 7, 22]. In ICMs, an
individual can be independently infected by any of his/her neighbours in the network. A spreading process
starts from a set of infectious ‘seeds’ in a susceptible population. In each time step, a susceptible individual
can become infected by each of his/her infected neighbours with a certain transmission probability.
Infected individuals keep infectious for a time of period, and then become susceptible again or immune to
infection. The spreading process stops when there is no new infections. In applications, most widely used
models include the susceptible-infected (SI) model, the susceptible-infected-susceptible (SIS) model and
the susceptible-infected-removed (SIR) model [65–67]. These models are widely used in the simulation
[1, 59, 68–71], detection [72–77] and forecast [78–82] of infectious disease spread and information
diffusion. ICMs are closely related to percolation: the dynamical spreading process of an ICM can be
transformed to a bond percolation with a given occupation probability [37]. As a result, the outcome of a
dynamical ICM can be mapped to the static final state of an equivalent percolation process. This mapping
bypasses the need to run dynamical models and enables us to analyse the spreading process using tools
and properties of the well-studied percolation problem.
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6 S. PEI ET AL.

Fig. 3. An example of k-core decomposition. The highlighted blue and yellow nodes have the same degree k = 8, but with different
kS values. Figure is adapted from [17] under permission from Springer Nature.

2.2 The k-core percolation and threshold models

The k-core decomposition classifies networks into layers with increasingly dense connections. In a net-
work, the k-core is defined as the largest subgraph whose nodes have at least k links [38, 39]. For example,
the 1-core of a network is simply its GC; the 2-core is composed of all loops. Each node corresponds to a
unique k-core index kS that indicates the highest k-core it locates. The k-core index kS is obtained through
k-shell decomposition in which nodes are iteratively pruned according to their remaining degrees [83].
This process can be also viewed as a recursive calculation of the Hirsch-index h [84], in which a node
is assigned index h if it has at least h neighbours with degree no smaller than h [85]. Nodes with low kS

values are located at the periphery of the network while the centre consists of nodes with high kS values.
An example of k-core decomposition is shown in Fig. 3. Recently, k-core percolation is generalized to
multiplex networks [86].

The k-core structure provides higher-order information on network connectivity beyond GC, which
can be viewed as a 1-core. Originally proposed on lattices in statistical physics [87], k-core percolation
(or bootstrap percolation) describes the formation process of k-core in networks [44]. In a standard k-core
percolation, nodes in a given network can be either active or inactive. Initially p fraction of nodes are
activated; in later steps, inactive nodes with at least k active neighbours become activated recursively. In
the final state, active nodes form the percolated k-core. The reversal process of k-core percolation depicts
the destruction of k-core structure. Specifically, q fraction of nodes are removed from the network, and
nodes with less than k neighbours are further recursively deleted. The final size of k-core |kS| is the
fraction of nodes left.

The k-core percolation has many important variants developed independently in other disciplines.
For instance, in sociology, Granovetter proposed the threshold model of collective behaviour in society
in 1978 [43]. In the well-studied version of linear threshold models (LTMs), nodes are activated only
when the number of active neighbours exceeds a predefined threshold value. The heterogeneous k-core
percolation, in which each node is assigned a local threshold, is a generalization of the classical k-core
percolation and a special case of LTM [88–90]. Within this framework, classical GC percolation can be

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/8/2/cnz029/5543798 by guest on 28 N
ovem

ber 2022



INFLUENCER IDENTIFICATION IN DYNAMICAL COMPLEX SYSTEMS 7

viewed as a special case of LTM where the threshold of each node i is ki − 1 (ki is the degree of node
i) [20]. Further, weights of interactions and non-linear threshold rules have been introduced to describe
more complex dynamics [22, 45, 91]. Recently, the k-core was also applied as a precursor of the jamming
transition in granular materials [92].

More recently, a generalized k-core percolation was proposed as a generalization of the leaf removal
process [93]. In this k-leaf removal algorithm, nodes of degree smaller than k and their nearest neighbours
together with all incident links are recursively pruned. The subgraph left after this pruning is called the
Generalized k-core, or Gk-core. Similar as k-core percolation, the pruning procedure decomposes the net-
work into layers of nested Gk-cores. However, as indicated by the authors, unlike k-core decomposition
that classifies nodes according to their topological properties, the Gk-cores characterize a specific robust-
ness of the network: it is actually the remained network after an epidemic that attacks weak individuals
of degree less than k and their neighbours.

The fundamental difference of k-core percolation from GC percolation is that the k-core size |kS|
could undergo a discontinuous, or first order, phase transition under certain circumstances. For example,
in Fig. 2(b), the left inset illustrates the 3-core of the network. Upon the removal of the red node, the 3-core
is completely destroyed, with only 2-core left as shown in the right inset. In this example, the 3-core
disappears abruptly from a non-zero size. Such discontinuous phase transition stems from the threshold
rule of percolation, and lies at the heart of catastrophic cascading failures in many real-world systems
[94, 95]. A number of seminal works have explored the phase diagram and mechanism of transition in
k-core percolation or threshold models [42, 44, 45, 91, 96, 97]. In particular, Watts modelled the global
cascade on random networks using a linear threshold model and derived the critical condition for the
discontinuous transition [45]. Goltsev et al. [44] found the hybrid phase transition in k-core percolation
with a discontinuous emergence of k-core as well as a continuous emergence of GC. In Ref. [44], authors
demonstrated the crucial role of ‘corona’, a subset of nodes in the k-core that have exactly k neighbours:
a random removal of even one node from the corona will trigger the collapse of a vast region of the k-core
around the removed node. Baxter et al. [42] further analytically derived the condition for the discontinuous
transition of k-core in networks with arbitrary degree distributions. The abrupt jump from a k-core with
non-zero size to its collapse can be mathematically explained by a bifurcation of the dynamical system
describing the k-core percolation. In such bifurcation, a small change of parameters (e.g. fraction of
removed nodes) leads to the discontinuous shift of the stable point from a non-zero solution (k-core with
non-zero size) to a zero solution (no k-core). Such bifurcation-induced transition is also responsible for
the global cascade and vulnerability in interdependent networks and network of networks [94, 98, 99].

Similar to optimal percolation, the configuration of node removal n can be optimized to induce
early transition. For random k-core percolation, at the critical point qrand, we have limq→q−

rand
|kS| > 0,

limq→q+
rand

|kS| = 0 and |kS|(q) = 0 for q > qrand. The optimal k-core percolation problem is to find
the unique configuration n∗ for which qc = min{q ∈ [0, 1]| limq′→q+ |kS|(q′) = 0} (Fig. 2(b)). In some
literature, this problem is also known as the minimal contagious set problem[100–106]. For threshold
models, the influencer identification problem is to search for a given number of seeds that can lead to the
maximal number of activated nodes.

3. Optimal percolation

Influence maximization is closely related to the optimal percolation problem. In addition, optimal per-
colation also provides a solution to the optimal immunization problem by dismantling the underlying
network on which propagation occurs. Recently, within the message-passing framework, Morone and
Makse developed an efficient algorithm, the CI, that gives a good approximation of optimal percolation
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8 S. PEI ET AL.

[20]. Later, better algorithms based on optimal decycling [21, 48] and EP [49] were proposed. In this
section, we discuss these structural approaches to the influence maximization problem.

3.1 Collective influence

Considering a network G with N nodes and M edges, the vector n = (ni, . . . , nN) encodes the configuration
of whether node i is removed (ni = 0) or not (ni = 1). Denoting the fraction of removed nodes by
q = 1 − ∑N

i=1 ni/N , optimal percolation aims to find the minimal fraction qc of nodes such that the GC
G∞ is fully dismantled. Within the message-passing framework, define message νi→j as the probability
that node i belongs to G∞ without being connected to it through node j. Therefore, νi→j = 1 if and only if
ni = 1 and a least one of i’s neighbours other than j is connected to G∞. For a locally tree-like structure,
the messages evolves by the following equations:

νi→j = ni

[
1 −

∏
m∈∂i\j

(1 − νm→i)

]
, (1)

where ∂i \ j denotes the immediate neighbours of i excluding j. Taking node j back into consideration,
the probability that i is connected to the GC is then calculated as

νi = ni

[
1 −

∏
m∈∂i

(1 − νm→i)

]
. (2)

By linearizing Eq. (1) around the fixed point {νi→j = 0}, the stability of this solution is determined
by the largest eigenvalue λ(n; q) of a linear operator M. Specifically, M is the Jacobian of the system
defined on 2M × 2M directed edges as Mm→n,i→j ≡ ∂νi→j

∂νm→n
|{νi→j=0}. A few calculations show that the

matrix M can be represented in terms of the non-backtracking (NB) matrix B [107] via

Mm→n,i→j = niBm→n,i→j, (3)

where the NB matrix is

Bm→n,i→j =
{

1 if n = i and j 
= m,

0 otherwise.
(4)

The matrix entry Bm→n,i→j is non-zero only when (m → n, i → j) form a pair of consecutive NB directed
edges, that is, (m → n, n → j) with m 
= j. For NB edges, Bm→n,n→j = 1.

Following the Frobenius theorem, the largest eigenvalue λ(n; q) is real and positive. The solution
{νi→j = 0} is stable if λ(n; q) ≤ 1. In this way, the optimal percolation problem can be solved by finding
the optimal configuration n∗ such thatλ(n∗; qc) = 1. For q < qc, all configurations lead toλ(n; q) > 1. On
the contrary, for q > qc, there exist two different circumstances. For some non-optimal configurations, the
macroscopic component still exists. On the other hand, there are also configurations such that λ(n; q) ≤ 1,
which correspond to a fully fragmented network. As q → q+

c , the number of configurations satisfying
λ(n; q) ≤ 1 gradually decreases and eventually vanishes at qc, where the optimal configuration n∗ is
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INFLUENCER IDENTIFICATION IN DYNAMICAL COMPLEX SYSTEMS 9

obtained. To develop a scalable algorithm, the eigenvalue can be approximated using the Power Method
[108]. For a given number of iterations �, the CI of node i can be defined as:

CI�(i) = (ki − 1)
∑

j∈∂Ball(i,�)

(kj − 1), (5)

where ∂Ball(i, �) is the frontier of the ball of radius � in terms of shortest path centred around node i. By
iteratively removing the node with largest CI, the largest eigenvalue of M can be minimized with high
efficiency. After each removal, the CI score of every remaining node in the network is recalculated. This
process continues until the network is fully fragmented, that is, G∞ � 1. The optimal configuration n∗

and qc are estimated from this removal process.
For q < qc, the network cannot be fully dismantled. In order to obtain the smallest GC, a greedy

reinsertion procedure is performed starting from the optimal configuration n∗. In the reinsertion procedure,
an index c(i) is define for each removed node. Specifically, c(i) is the number of clusters that would be
joined together if node i is put back in the network. Nodes with the smallest c(i) score are iteratively
reinserted until the fraction of removed nodes decreases to q.

The computational complexity of the CI algorithm is O(N2). In practice, it can be accelerated by
limiting the calculation and update of CI inside the (� + 1)-ball around the removed node. In addition,
the complexity can be further reduced to O(N log N) by sorting the CI scores in a heap structure [109],
which makes it scalable to large networks. Simulation results on both synthetic and real-world social
networks show that the CI algorithm outperforms the equal graph partitioning (EGP) immunization
strategy [26] and frequently used heuristic metrics such as degree centrality, PageRank and k-core index.
For a Twitter network with 469,013 users and a Mexico mobile communication network of 1.4 × 107

users, the CI algorithm achieves fully fragmentation with a smaller set of influencers [20] (see Fig. 4).
For such massively large-scale networks, a variant of the CI algorithm can be applied without losing
performance by removing a finite fraction of nodes instead of one node at each step.

(a) (b)

Fig. 4. Performance of CI in large-scale real social networks. GCs G(q) for a Twitter network (a) and a social network of mobile
phone users in Mexico (b) computed using CI, HDA (high degree adaptive), PR (PageRank), HD (high degree) and k-core strategies
are compared. Figure is reused from [20] permitted by Springer Nature.
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10 S. PEI ET AL.

Given a finite radius �, the CI algorithm is local in nature. To incorporate the influence of a node at
the global level, Morone et al. [109] improved the CI algorithm using a message-passing approach and
proposed the CI propagation algorithm (CIP). As a variant of the CI algorithm in the limit of � → ∞,
the CIP algorithm is able to reach the analytical optimal percolation threshold of random cubic graphs
[110]. Another BP variant of CI algorithm, CIBP, was also proposed. Combining the dynamics of the SIR
model with message-passing updating rules, CIBP achieves similar performance with CIP. However, the
improvements of CIP and CIBP over CI are made at the expense of increasing computational complexity
from O(N log N) to O(N2 log N). Kobayashi and Masuda recently developed an immunization algorithm
for networks with community structure combining the CI algorithm and coarse graining procedure in
which communities were regarded as supernodes [111]. From a mesoscopic scale, nodes connecting
different communities can be identified at a cost of O((N2/NC) log N) (NC is the number of communities).
The optimal percolation problem was also studied on multiplex networks. Osat et al. [112] showed that
characteristics in multiplex networks such as edge overlap and interlayer degree–degree correlation could
profoundly change the properties of influencers. Neglecting the multiplex structure of a network would
lead to significant inaccuracies about its robustness. In applications, the CI theory has been used to locate
superspreaders of information in real-world social media [113], find sources of fake news in Twitter during
the 2016 US presidential election [114, 115], single out critical regions in brain networks [10, 116], infer
personal economic status [117], improve cooperation in evolutionary games [118] and control biological
networks [119–122].

As demonstrated in Ref. [20], the optimal percolation problem can be mapped exactly onto the
influence maximization problem for the LTM with threshold ki −1 (ki is the degree of node i). As a result,
the CI algorithm, designed for optimal percolation, also provides a solution to the influence maximization
problem for this specific transmission model. For LTMs with other threshold values, the CI algorithm
was generalized to solve the influence maximization problem with first-order transitions, which will be
addressed later. In addition, a detailed discussion on the relation of the CI algorithm with the SIR model
can be found in Ref. [20].

3.2 Optimal decycling-based algorithms

Recent works have shown that the optimal percolation problem is closely related to the optimal decycling
problem, or minimum feedback vertex set (FVS) problem [21, 48]. A FVS is the set of nodes whose
removal would break all the loops in the network [123]. The optimal decycling problem is, in fact,
analogous to find the FVS with smallest number of nodes. The rationale behind the connection between
optimal percolation and optimal decycling is that, for sparse random networks, short loops rarely exist
in small connected components [124–126]. If the long loops in the GC are cut, the network will break
into small tree fragments. As indicated by Braunstein et al. [21], the optimal decycling threshold qdec

c

acts as an upper bound of the optimal percolation threshold qc. For random networks with light-tailed
degree distribution (finite second moment), the minimal size of decycling set is equal to the minimal size
of dismantling set in the limit N → ∞. The optimal decycling problem is itself an NP-hard problem,
but can be solved via BP algorithms approximately. Two approaches based on decycling algorithm were
developed recently [21, 48]. Both of them apply a three-stage procedure: first decycle the network with
minimal number of nodes, then break the tree into small components and finally reinsert some nodes to
the network without increasing the size of the largest component. Compared with the CI algorithm, these
two algorithms take into account the global topology of the network and achieve a better performance.

The belief-propagation-guided decimation (BPD) algorithm proposed by Mugisha and Zhou is based
on the spin glass model of the FVS problem [127]. In order to transform the global acyclic constraint into
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INFLUENCER IDENTIFICATION IN DYNAMICAL COMPLEX SYSTEMS 11

local ones, a variable Ai, which takes the value 0, i or j ∈ ∂i, is assigned to each node [127]. If node i is
removed from G, Ai = 0. Otherwise, Ai = i if it is a root of a tree or Ai = j if node i has a parental node
j. Given a microscopic configuration A = {A1, A2, . . . , AN}, the fraction of removed nodes is represented
by:

qdec(A) = 1

N

N∑
i=1

δ0
Ai

, (6)

where δl
n is the Kronecker delta function (δl

n = 1 if n = l and 0 otherwise). For each edge (i, j) in the
network, an edge factor Cij(Ai, Aj) is defined as [127]:

Cij(Ai, Aj) = δ0
Ai
δ0

Aj
+ δ0

Ai
(1 − δ0

Aj
− δi

Aj
)+ δ0

Aj
(1 − δ0

Ai
− δ

j
Ai
)

+ δ
j
Ai
(1 − δ0

Aj
− δi

Aj
)+ δi

Aj
(1 − δ0

Ai
− δ

j
Ai
). (7)

The edge factor Cij(Ai, Aj) is either 1 or 0. The edge (i, j) is regarded as satisfied if Cij(Ai, Aj) = 1, and
unsatisfied otherwise. For a configuration A, if all edges in a network G are satisfied, we define A as
a solution of G. The definition of satisfied edges relaxes the original problem of acyclic components to
allow at most one cycle in the remained components. Indeed, it has been proven that all remaining nodes
in a graph for a solution A form a subgraph consisting of several components that each contains at most
one cycle. Considering all solutions of the network, a partition function of the system is defined as:

Z(μ) =
∑

A

eμN(1−qdec(A))
∏
(i,j)∈G

Cij(Ai, Aj), (8)

whereμ is the inverse of temperature. At the limit of zero temperature, the partition function is contributed
exclusively by the optimal configuration A∗ with the minimal fraction qdec

c .
Under locally tree-like assumption, the marginal probability q0

i (t) for node i to be removed from
the remaining network G(t) can be calculated through iterations of a set of BP equations [48]. At each
time step t, the BP equations are iterated for a given number of rounds and the removal probability q0

i is
calculated for each node. The node with the highest probability q0

i is removed from the network even if
the BP equations do not converge to a fixed point. The process stops when the network becomes acyclic.
If the largest component G∞ remains extensive, it can be further fragmented by iteratively deleting nodes
that lead to the smallest GC. The BPD algorithm can be well applied to networks with rare short loops.
However, for a large number of networks with abundant communities, the nodes in FVS set are usually
more than necessary to dismantle the network stricture. Therefore, a reinsertion process can be proceeded
without significantly increasing the size of G∞. This process can be done through a greedy algorithm, in
which the nodes that cause the least increase in G∞ are reinserted one after another until the size of G∞
reaches a predefined threshold.

The BPD algorithm is scalable to large networks with a computational complexity of O(N log N).
Simulations on random network ensembles and real-world networks indicate that the BPD algorithm
is superior to the CI algorithm in optimal percolation problem (see Fig. 5). However, as shown in Ref.
[109], the BPD algorithm is relatively slower than the CI algorithm. For large random Erdős–Rényi (ER)
networks and scale-free networks, the BPD algorithm manages to fragment the network by removing
a smaller set of nodes compared with CI algorithm. In particular, the percolation threshold is close
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12 S. PEI ET AL.

(a) (b)

Fig. 5. Performance of the BPD algorithm in ER and RR networks. Fraction of removed nodes ρ to break ER random networks of
mean degree c (a) and regular random networks of degree K (b). Diamonds show the results obtained from CI. Crosses represent
results of the replica-symmetric (RS) mean-field theory. Plus symbols in (b) show the mathematical lower bound (LB) on the
minimum size of target nodes. Figure reuse from [48] is permitted by American Physical Society.

to the minimal value predicted by the replica-symmetric (RS) mean-field theory [110, 127]. In the CI
algorithm, the size of G∞ decreases almost linearly with the increase of q. In contrast, G∞ features an
abrupt collapse under the BPD algorithm. This results from the intrinsic nature of the FVS problem and
the efficiency of tree dismantling. With the existence of such collapse, the BPD process can work as an
efficient attack strategy, leaving no warning to the system before its total failure. In a recent work on
dismantling efficiency and network fractality [128], it was found that the BPD algorithm outperforms
the CI algorithm no matter whether the network is fractal or not, while the CI algorithm works better on
non-fractal networks, which have high ratios of long-range shortcuts to short-range connections.

Braunstein et al. [21] considered the optimal decycling problem from a different point of view. In
this work, the optimal percolation problem was named as network dismantle. Noticing that a network is
acyclic if and only if its 2-core is empty, authors mapped the decyling process to a 2-core percolation.
Assume a set of nodes S ⊂ V are initially removed from the network. The 2-core percolation can be
described by the evolution of time-dependent binary variables xt

i (S) for 1 ≤ i ≤ N . Starting from the
initial setting x0

i (S) = 1 for removed nodes i ∈ S and x0
i (S) = 0 for i /∈ S at t = 0, the evolution

follows [21]

x(t+1)
i =

{
1 if xt

i (S) = 1

I
[∑

j∈∂i

(
1 − xt

j (S)
) ≤ 1

]
if xt

i (S) = 0,
(9)

where the indicator function I is 1 if the argument is true and 0 otherwise. As xt
i can only change from 0

to 1, the equations admit a fixed solution x∗
i (S) as t → ∞. In particular, x∗

i (S) = 0 iff i belongs to the
2-core of G \ S. If x∗

i (S) = 1 for all nodes, G \ S contains no loops and S is called a decycling set. To find
the minimal decycling set, it is convenient to introduce the probability distribution over decycling sets S
using the Boltzmann distribution in statistical physics

η̂(S) = 1

Z(μ)
eμ|S| ∏

i∈V

I
[
x∗

i (S) = 1
]
, (10)
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INFLUENCER IDENTIFICATION IN DYNAMICAL COMPLEX SYSTEMS 13

where |S| is the number of nodes in S, μ is the inverse temperature and Z(μ) is the partition function that
normalizes the distribution. The minimal size of decycling sets can be calculated in the zero-temperature
limit: qdec

c = limμ→−∞ 1
Nμ ln Z(μ).

Since x∗
i depends on S in a global way, it is difficult to compute Z(μ) directly. To solve this problem,

authors transformed the global constraint
∏

i∈V I
[
x∗

i (S) = 1
]

to its local equivalent. The node removal
process in 2-core percolation can be described by an integer ti(S) = min{t : xt

i (S) = 1} defined for each
node i, which encodes the time when node i is removed from the network. For i ∈ S, it is straightforward
that ti(S) = 0. For i /∈ S, ti(S) depends locally on its neighbours according to

ti(S) = φi({tj}j∈∂i) = 1 + max2({tj(S)}j∈∂i), (11)

where the function max2 returns the second largest value in its argument. Under this parameterization,
the partition function can be rewritten as

Z(μ) =
∑
{ti}

eμ
∑

i ψi(ti)
∏
i∈V

I[ti < ∞]I [
ti = φi({tj}j∈∂i)

]
, (12)

where ψi(ti) = I[ti = 0].
The exact computation of Eq. (12) is NP-hard. In calculation, a simplification of the partition function

in Eq. (12) can be performed by restricting ti to be no larger than T . All values ti larger than T are regarded
as infinity. Under this simplification, trees with diameters larger than T + 1 are considered to be part of
a long cycle. Given a large enough T , the effect of this simplification is negligible. For locally tree-like
graphs, the partition function can be computed by the cavity method [129, 130], in which ‘messages’
are exchanged between neighbouring nodes. For each link i → j, a message ηij(ti, tj) as a function of
activation times ti and tj is introduced. The messages satisfy the self-consistent BP equations [21]:

ηij(ti, tj) ∝
∑

{tk }k∈∂i\j

eμψi(ti)I [ti = φi({tk}k∈∂i)]
∏

k∈∂i\j

ηki(tk , ti). (13)

As the temperature approaching zero (μ → −∞), probabilities of the messages ηij(ti, tj) in the BP
equations concentrate on the solution to Eq. (9) that minimizes the cost function

∑
i ψi(ti). To develop

an algorithm that finds the optimal decycling set, a slightly different cost function is used: ψi(ti) =
I[ti = 0] + εi(ti), where εi(ti) is a randomly chosen small cost. Further, the 2-core percolation process
is relaxed to allow ti ≥ 1 + max2({tj}j∈∂i) in Eq. (9). Define hi(ti) as the minimal cost to dismantle
the 2-core under the condition that node i is removed at ti. The optimal decycling set is determined by
S∗ = {i ∈ V |t∗i = 0}, where t∗i = arg min hi(ti). In calculation, hi(ti) can be computed using Min-Sum
algorithm, which is derived at the zero temperature limit of BP equations. Concretely, messages hi(ti)

are solved by iterating a set of equations [21]. In most cases, convergence can be reached within a small
number of iterations, with a computational complexity O(MT) in each iteration. In case the Min-Sum
equations do not converge, a reinforcement procedure is applied to damp the system [131].

In the acyclic network G\S∗, there may still exist some extensive tree components. These large trees
can be fragmented efficiently via a greedy tree-breaking procedure with computational complexity of
O(N(log N+T)). In addition, for networks containing many short loops, a reverse greedy (RG) reinsertion
procedure is applied to recover the nodes that do not increase the size of the GC, as performed in the CI
and BPD algorithms. The computational cost of this RG procedure is kmaxC′ log(kmaxC′), where kmax is
the maximal degree and C′ is the upper bound of G∞ size.
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14 S. PEI ET AL.

Fig. 6. Performance of the Min-Sum algorithm in an ER network. Relative size of the largest component C/N as a function of the
fraction of nodes S/N removed from an ER network (size N = 78,125 and average degree d = 3.5). Comparisons are performed
for the Min-Sum algorithm (MS), random (RND), adaptive largest degree (DEG), adaptive eigenvector centrality (EC), adaptive
CI and simulated annealing (SA). Figure reuse from [21] is permitted by National Academy of Sciences.

Simulations on both synthetic and real-world social networks demonstrate the effectiveness of this
decycling-based algorithm. For an ER random graph of size N = 78, 125 and average degree d = 3.5,
the G∞ size deceases to 0.032 when 17.81% of nodes are removed. Compared with metrics of degree
centrality, eigenvector centrality and the CI algorithm with � = 5, it was found that the three-stage
algorithm is superior in dismantling the GC (see Fig. 6). The Monto Carlo-based simulated annealing
(SA) algorithm gives a competitive result. However, its computational complexity is much higher. For
the same Twitter network analysed in Ref. [20], the Min-Sum algorithm with RG performs equally well
with SA, removing only 3.4% of nodes to break the GC (smaller than 1,000 nodes). In comparison, CI
needs to remove 4.6% of nodes to achieve the same fragmentation performance.

Inspired by the decycling-based algorithm, a simple and faster heuristic algorithm with complexity
O(N), CoreHD, was developed [132]. Starting from the 2-core of a network G, CoreHD recursively
removes nodes with the highest degree in the 2-core until G is fully dismantled. Despite its simpleness,
CoreHD is reported to perform better than the CI algorithm. Specially, for large random networks, the
performance of CoreHD is close to the theoretical solution predicted by replica-symmetry and 1RSB
approximation [100]. In addition, this simple algorithm is amenable to rigorous analysis, performing
well even on loopy networks which are not accessible for typical message-passing algorithms. In a recent
work by Schmidt et al. [133], the CoreHD algorithm was analysed rigorously by translating the node
removal in the CoreHD algorithm to a random process on the degree distribution of the network. The
mapped dynamics, described by a set of coupled non-linear ordinary differential equations, characterize
the behaviour of the CoreHD algorithm on random graphs. In the analysis, new upper bounds on the size
of the minimal contagious sets in random graphs were proposed, which improves the best known results
[100, 110]. The CoreHD analysis also inspired an improved heuristic algorithm, WEAK-NEIGHBOR,
that works for both optimal percolation and k-core percolation [133]. Details of this algorithm will be
introduced in the next section.

3.3 EP-based immunization

Another approach of optimal percolation was developed by Clusella et al. [49] based on EP. In contrast with
ordinary bond percolation which usually exhibits second- or higher-order phase transitions, EP features an
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INFLUENCER IDENTIFICATION IN DYNAMICAL COMPLEX SYSTEMS 15

unusual threshold behaviour—an explosive emergence of the GC at the critical point [134–138]. To obtain
an explosive transition, Achlioptas et al. [134] proposed a modified edge addition procedure, wherein,
at each step, two candidate edges are chosen randomly, but only one of them is actually occupied. Given
the weight of a node measured by the size of the connected component it belongs to, the edge with the
minimal sum or product of nodes’ weights is selected. These two procedures are referred to as the min-
cluster and min-product rule. Compared with the random occupation of edges in ordinary percolation, the
min-cluster or min-product rule favours the connection between small components, hereby suppresses
the generation of an extensive component.

The explosive immunization (EI) algorithm adopts an inverse strategy that starts from a configuration
where all nodes are virtually removed (q = 1). Then less ‘dangerous’ nodes are progressively unvacci-
nated. The procedure is performed in two schemes for q > qc and q < qc, each of which uses a score
to rank nodes in terms of their suitability to be unvaccinated. Similar to the construction of EP, in each
time step, m candidates (typically m ≈ 103) are randomly selected. For q > qc, the node with the lowest
blocking ability (the weakest blocker) is put back into the network. The blocking ability is quantified by
a score σ (1)i , which is a synthesis of the size of clusters it would join and its local effective connectivity.
Specifically, the score σ (1)i is defined as [49]: σ (1)i = k(eff)

i + ∑
C⊂Ni

(
√|C| − 1), where Ni is the set of

all components connected to node i and |C| is the size of a component C. k(eff)
i measures the ‘effective’

connectivity of node i based on the local structure of its neighbourhood and can be determined by a set of
closed equations [49]: k(eff)

i = ki − Li − Mi({k(eff)
j }j∈∂i), where ki is the degree of node i, Li is the number

of leaves in the neighbourhood of node i and Mi returns the number of strong hubs. The strong hubs are
defined recursively as nodes with k(eff)

i larger than a threshold value (set as 6 in applications). The terms
Li and Mi are subtracted from ki since leaves have no contribution to connectivity and hubs are more
likely to be removed in explosive immunization.

In the first part of the EI algorithm, the node with the lowest σ (1)i score among m candidates is
unvaccinated in each iteration. This process eventually reaches a critical fraction of immunized nodes
qc where the G∞ size exceeds a small threshold value. In the region of q < qc, however, the same
procedure will lead to an abrupt jump of the G∞ size when two large components are joined together. As
a consequence, in the second part at q < qc, another score σ (2)i is used to suppress such explosive growth
of the GC. The definition of σ (2)i reads [49]

σ
(2)
i =

⎧⎪⎨
⎪⎩

∞ if G∞ � Ni,

|Ni| else, if arg mini|Ni| is unique,

|Ni| + ε|C2| else,

(14)

where |Ni| is the number of components connected to i, C2 is the second largest component in Ni and ε is a
small positive number. According to the score σ (2)i , the selection is made only among the neighbourhood
of G∞. The candidate with the smallest number of neighbouring components is favoured; if it is not
unique, the one with the smallest |C2| is selected. This process is proceeded recursively until the fraction
of vaccinated nodes q reaches the expected value.

Using the Newman–Ziff percolation algorithm in identifying susceptible components [139], the explo-
sive immunization algorithm is computationally efficient, which scales as O(N log N). In addition, it can
be accelerated further by considering a small number of candidates. Simulations on both synthetic and
real-world networks indicate that the explosive immunization algorithm outperforms the CI algorithm
(see Fig. 7). As a matter of fact, it achieves the smallest percolation threshold qc except for the BP
algorithms in Ref. [21, 48].
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16 S. PEI ET AL.

Fig. 7. Performance of the EI algorithm in an ER network. Relative size of the largest clusters S(q) after q fraction of nodes are
removed from ER networks with size N = 106 and average degree 〈k〉 = 3.5. The red dashed curve is obtained by EI with score
σ (1). The black continuous curve is obtained with σ (2) for q < q∗ (S(q∗) = 1/500). The blue dotted line is the result of CI. The
inset shows the relationship between qc and 〈k〉 − 1. The dotted line is the result for random strategy. Figure reuse from [49] is
permitted by American Physical Society.

3.4 Graph partition-based algorithm

In an earlier work, the optimal immunization problem was solved by an EGP immunization strategy
based on the heuristic optimal partitioning of graphs [26]. In EGP, the network is fragmented into small
connected clusters of approximately equal size. In a targeted attack on high-degree nodes, clusters after
fragmentation have a broad distribution of sizes, including many small clusters. The targeted strategy may
select high-degree nodes in these small clusters, which are unnecessary in breaking down the network.
The EGP method avoids fragmenting small clusters, as the clusters all have similar sizes. In the EGP
method, a network is first separated into two components with arbitrary size ratio by a minimal number of
separators, solved using the nested dissection (ND) algorithm [140]. Then the network can be partitioned
into any desirable number of same size clusters by applying ND algorithm recursively. This greedy
graph-partitioning strategy provides 5–50% improvement over the targeted strategy on model networks
and real-world networks.

The original network dismantle problem was recently extended to a generalized network dismantle
(GND) problem in which the cost of removing a node is considered [141]. In real-world systems, attacking
important nodes typically requires a high cost as they are usually well protected. The GND problem seeks
to find a set of nodes whose removal would fragment a network at the minimal cost.

Authors solved this problem by recursively applying node-weighted partition, that is, partition a
network into two parts of same size by removing a minimal number of edges. Specifically, define vi = +1
if node i belongs to a subgraph M and vi = −1 if node i belongs to its complement M̄. Assuming that
the cost of cutting a link (i, j) equals the cost of removing nodes i and j, a node-weighted spectral cut
objective function was proposed [141]:

1

2

∑
i,j

−1

2
(vivj − 1)Ai,j(wi + wj − 1), (15)

where A is the adjacency matrix, and wi is the cost of removing node i. The optimization problem was
then written in matrix notation as minimizing vT Lwv/4 subject to

∑
i vi = 0, where Lw = DB − B is
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INFLUENCER IDENTIFICATION IN DYNAMICAL COMPLEX SYSTEMS 17

the node-weighted Laplacian of the matrix B = AW + WA − A (W and DB are diagonal matrices with
elements Wii = wi and (DB)ii = ∑

j Bij.)
The problem with integer constraint vi ∈ {+1, −1} is difficult to solve. As a result, the problem is

relaxed to allow a real number vi ∈ R. For the relaxed problem, the solution of v is analytically given
by the second-smallest eigenvector of Lw, denoted by v(2). To approximate this solution, the matrix Lw

is transformed so that v(2) becomes the second-largest eigenvector. The eigenvector problem is solved
by power iteration, with the initial vector set perpendicular to the largest eigenvector of the transformed
matrix. Once v(2) is obtained, the separating edges are those connecting nodes with vi ≥ 0 to nodes with
vi < 0. The set of nodes to be removed are optimized to cover all separating edges with minimal cost,
which is transformed to the weighted vertex cover problem [142]. Finally, a reinsertion procedure is
applied to find the nodes that are not necessary to fragment networks.

The GND algorithm has complexity O(N log2+ε(N)), which can be applied to large-scale networks.
For non-unit costs, the GND algorithm outperforms current state-of-the-art; for unit cost, it performs
better than or comparable to state-of-the-art [141].

3.5 Large deviations of percolation

The optimal percolation problem can be studied within the framework of large deviations of percolation.
Generally, in the BP equations that describe the percolation process, the inverse temperature β in the
Boltzmann distribution of configurations n, e−βE(n) (E(n) is energy defined by the size of GC for n),
controls the deviation of dynamics from random percolation. For instance, an infinity temperature (β = 0)
corresponds to the random scenario, where each configuration is equally possible. As the temperature
decreases, the dynamics start to deviate from the random scenario to more extreme cases: the distribution of
configurations will concentrate on rare configurations with lower energy, that is, smaller GC. Particularly,
at zero temperature β → ∞, only the configuration with the smallest GC exists with non-zero probability.
In this way, the optimal percolation problem can be interpreted as an extreme case of the large deviations
of percolation.

Recently, properties of large deviations of percolation have been analysed using Monte Carlo Markov
Chains [61] and BP [62]. In particular, Bianconi [60, 62] developed a large deviation theory of percolation
that characterizes the response of a sparse network to rare events. This general theory contains both
continuous transitions observed for random initial damage and discontinuous transitions corresponding
to rate configurations of the initial damage that suppresses the GC size. This large deviation theory of
percolation was also generalized to multiplex networks [63], based on which a new metric, sageguard
centrality, was developed to single out the nodes that control the response of the entire multiplex network
to random damage [64]. It was found that the sageguard centrality correlates well with nodes in the
optimal percolation problem.

3.6 Summary

It is interesting that the optimal percolation, or network dismantle problem, can be solved from quite
different approaches: the CI algorithm optimizes the stability of zero solution by minimizing the spectral
radius of the NB matrix; the BPD and network dismantle algorithms aim to optimally remove cycles in
the network; the EI algorithm attempts to gradually identify less vital nodes so that an explosive collapse
of network would occur if the remaining critical nodes are attacked; the EGP and GND algorithms work
by recursively partitioning the network into equal-size components; and large deviations of percolation
considers the rare events deviated from random percolation. In terms of implementation, CI proceeds as a
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18 S. PEI ET AL.

Table 1 Summary of methods developed for optimal percolation. N is the network size and M is the
number of links. ‘NR’ stands for ‘not reported’.

Name Description Complexity References

Collective Influence
(CI)

Stability of the NB matrix, greedy
approach, easy to interpret and
implement, adapted in real-world
problems

O(N log N) [20]

Network dismantle Optimal decycling, belief-propagation
approach, Min-Sum algorithm, solve by
iteration until convergence, compute the
optimal node set simultaneously

O(MT) per iteration [21]

Belief-propagation-
guided decimation
(BPD)

Minimum feedback vertex set, spin glass
model, belief-propagation approach, no
convergence needed in BP iteration,
select nodes iteratively

O(N log N) [48]

Explosive
Immunization (EI)

Explosive percolation, iteratively select
less important nodes from candidates,
based on score defined for each node

O(N log N) [49]

Equal graph
partitioning (EGP)

Recursively partition networks into
clusters of similar size, avoid breaking
small clusters

NR [26]

Generalized network
dismantle (GND)

Consider costs of removing nodes,
node-weighted partition, recursive
equal-size partition, solved by spectral
properties of a Laplacian and weighted
vertex cover

O(N log2+ε(N)) [141]

greedy adaptive algorithm, which is straightforward to implement; the BPD, network dismantle algorithm
and large deviations of percolation need to iterate BP or Min-Sum equations to find the solution; the EI
algorithm iteratively selects unvaccinated nodes from a number of candidates; and the EGP and GND
algorithms apply graph partition recursively with different techniques. Most of these algorithms require
a reinsertion process that excludes unnecessary nodes from the optimal node set. In essence, to solve
an intrinsically global optimization problem, most approaches have to transform it to another problem
that can be solved locally. For instance, CI defines a centrality based on local structure; the BP equations
in the BPD and network dismantle algorithms incorporate local constraints compatible with the global
constraints; the score calculation in the EI algorithm depend on local connectivity; and the EGP and GND
algorithms are designed to recursively partition smaller local clusters. More features of these algorithm
are summarized in Table 1.

4. Dynamics with continuous transitions

The problem of influencer identification in ICMs was originated from the work of Domingos and Richard-
son [24, 143], who aimed to advertise a product though viral marketing. Instead of viewing market as a
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INFLUENCER IDENTIFICATION IN DYNAMICAL COMPLEX SYSTEMS 19

set of independent entities, they treated it as a networked system where the potential profit contributed by
a customer is mostly determined by his/her interactions with others. This problem was later formalized
by Kempe et al. [22] into a well-defined combinatorial optimization problem: considering an ICM in a
network G and an integer k, how to find the optimal set of k seeds that initiates the largest scale propaga-
tion? The intrinsic difficulty of this problem is rooted in the exponentially growing configuration space
with k. In fact, it was proven to be among the class of the hardest optimization problems—NP hard [22],
and thus can only be solved approximately via heuristic approaches in polynomial time.

4.1 Greedy algorithms

One of the most intuitive solutions is to use greedy algorithm that selects the k most influential single
spreaders to approximate the optimal set of influencers. In this approach, the influence of single influencers
can be estimated by averaging a large number of Monte Carlo simulations of spreading processes initiated
by each node. As proposed in Kempe et al. [22], the optimal set of influencers S is obtained by recursively
adding the node that leads to the largest marginal increase to the total influence. The influence function
σ(S), defined as the expected number of active nodes given the seed set S, can be calculated by Monte
Carlo simulations. The marginal contribution of an individual influencer i, σS(i), can then be computed
through σS(i) = σ(S ∪{i})−σ(S). For a general class of spreading models including ICMs, the influence
function σ(S) was proven to satisfy the characteristic of the so-called submodularity [144, 145]—a
function σ(·) is submodular if the marginal gain from adding an element to a set S is at least as high as the
marginal gain from adding the same element to a superset of S. In 1978, Nemhauser et al. mathematically
proved that, for problems with submodular property, a greedy heuristic always finds a solution whose
value is at least 1 −[(K − 1)/K]K times the optimal value [144, 145]. Here, K is the size of seed set. This
bound has a limiting value of 1−1/e, which is independent of the size of network or seed set. Leveraging
on this theoretical result, the simple greedy algorithm for these models is guaranteed to approximate the
optimal influence within a factor of 1 − 1/e ≈ 63%, that is, σ(S) ≥ (1 − 1/e)σ (S∗), where S is obtained
from the greedy algorithm and S∗ is the actual optimal set.

In case the cost of removing each node is not identical, the result of this basic greedy algorithm can be
far from optimal. In such circumstance, a naive modification of the basic greedy algorithm can be made
by favouring the node with maximum benefit–cost ratio. Unfortunately, this intuitive generalization can
perform arbitrarily worse than the optimal solution S∗. In order to guarantee a relatively good performance,
Leskovec et al. [146] proposed the Cost-Effective Forward (CEF) algorithm. As a combination of the
benefit–cost and unit-cost greedy algorithms, the CEF algorithm provides a constant factor (1 − 1/e)/2
approximation of the maximal influence. Even though each of the two basic greedy algorithms can
perform arbitrarily bad, it was proved that for a given circumstance, at least one of them could obtain a
relatively good performance.

Due to the heavy computational burden of massive Monte Carlo simulations, greedy algorithms
are unscalable to large-scale networks. This can be partly alleviated by exploiting the sparsity of cost
reductions [146]. Furthermore, by exploiting the submodular property of the influence function, the
number of simulations can be significantly reduced in practice. Given that the marginal increment of
a node is monotonically decreasing with the growth of S, there is no need to recompute the marginal
increments for all nodes at each time step. Specifically, if the marginal increment of a node i in previous
time steps is already smaller than that of another node j in current time step, the recomputation for σ(i)
is unnecessary as it is definitely smaller than σ(j). In calculations, the marginal influence of each node
σ(i) is marked valid initially. Before the next influencer is selected, the nodes are scanned in a decreasing
order of their influence. If σ(i) for the top node i is invalid, it is recomputed and inserted into the existing
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20 S. PEI ET AL.

order using a priority queue. If the recomputation leads to a new value that ranks at the top, it should be
added into S without calculating the marginal increments for any other nodes. This cost-effective lazy
forward (CELF) algorithm leads to far fewer evaluations of the influence function and achieves up to a
factor of 700 improvement in speed compared to CEF with equal performance. Further improvement of
CELF can be made by recording the node with largest marginal gain among the nodes that are already
examined in the current iteration in a heap data structure [147]. This technique can improve the efficiency
of CELF by another 35–55%.

Further improvement of greedy algorithms was achieved using the connection between ICMs and
percolation. As indicated before, ICMs can be mapped to a bond percolation. Based on this idea, Chen et al.
[148] performed a bond percolation on a graph G to estimate the influence of a seed set. Specifically, each
link in a graph G is randomly selected with the predefined transmission probability, and the selected links
form a subgraph G′. Then the influence functionσ(S) can be quantified by the number of vertices reachable
from S in G′, where each edge in G′ is regarded as a real propagation path. With this simplification, the
influence of a single node i can be obtained with a linear scan of the graph G′ and its marginal increment to
S is either 0 or σ(i), depending on whether i is in the influence range of S or not. This procedure provides
O(N) speedup to the basic greedy algorithm. In implementation, it can be proceeded in combination with
CELF to avoid unnecessary evaluations.

Despite above improvements of greedy algorithms for IC, it is still prohibitive for massively large
social networks with millions of users. In order to reach the trade-off between performance and compu-
tational efficiency, Chen et al. [148] also proposed a heuristic degree discount algorithm. The basic idea
of the degree discount algorithm is that σ(i) should be quantified by its degree discounted by the number
of its neighbours that are already included in S. For ICMs with a small propagation probability, the
indirect influence between multi-hop neighbours is negligible so we can only take into account the direct
influence between immediate neighbours. Under this assumption, a more precise metric was proposed.
The performance of this algorithm nearly matches that of the basic greedy algorithms. Furthermore, it is
far more efficient in combined use of the heap data structure and scalable for large-scale networks.

Another scalable variant of the basic greedy algorithm was developed based on local influence regions
[149]. The maximum influence arborescence (MIA) algorithm assumes that propagations tend to be along
the maximum influence paths (MIP) between each pair of nodes, which are defined as the path with the
highest propagation probability among all possible ensembles. For a given pair of nodes, the MIP between
them can be computed efficiently using the Dijkstra shortest-path algorithm [150, 151]. The union of
MIPs starting or ending at a node i form an arborescence structure, which defines its local influence
region denoted by δ(i). The global influence of a set S is then quantified by the size of the union of all
local influence regions: σ(S) = | ⋃i∈S δ(i)|, where | · | denotes the size of a set. A tuning parameter is
introduced so that all MIPs with probability below θ are discarded. By adjusting the parameter θ , the
size of the local influence regions can be altered so that trade-off between computational efficiency and
performance is achieved. Based on such approximations, the local marginal increment of a node can be
calculated with significantly high efficiency. As the local influence function is also submodular, the basic
greedy algorithm guarantees the 1 − 1/e approximation bound for influence maximization. The linearity
of local marginal influence allows for the efficient update of incremental influence during iterations. More
importantly, the update is only required in a local influence region around the selected influencer.

Wang et al. [152] proposed a community-based greedy algorithm for mining top-k influential nodes
in mobile social networks. In the algorithm, communities with regional information diffusion are first
detected, and influential nodes are then located by selecting certain communities using a dynamic pro-
gramming algorithm. As shown in recent works, modularity of networks has significant impact on
information diffusion [153–155]. In the general idea, the community-based greedy algorithm considers
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information diffusion within each community to disentangle their interactions, thus simplifies the process
of selecting multiple influencers. This algorithm was found to be more than an order of magnitude faster
than typical greedy algorithms. In a recent work by Hu et al. [156], authors employed percolation theory
to show that spreading processes of ICM are limited to a local area in most occasions. Therefore, local
structure can identify and quantify influential global spreaders in large-scale social networks. An efficient
percolation-based greedy algorithm was proposed.

In another line of research, instead of using Monte Carlo simulations, centrality metrics based on the
topological structure of the underlying network were adopted to estimate nodes’ influence. These metrics
are independent of specific spreading processes thus can be calculated with high computational efficiency.
In addition, they also shed light on the impact of network topology on spreading processes, which is of great
significance in both accelerating and confining propagations. Instead of actually running the spreading
process, these metrics are mostly based on the local or global topology of a node in the network, for
instance, number of immediate neighbours [28, 29, 59, 157], global position [17, 158–162], number of
shortest paths [163–166], random walks [167–169], eigenvectors [170–173], path counting [174–177],
etc. Even though the optimal metric that performs best for all spreading dynamics on all underlying
networks does not seem to exist [178–180], these centrality-based approaches are still persistently used
due to their simplicity and relative satisfactory performance in some occasions.

4.2 Message-passing approach

Although the greedy optimization guarantees to approximate the maximum influence by a constant factor,
it often suffers from the drawback of being trapped into local optimum. From an optimization point of
view, the message-passing approach, which has been well developed in statistical physics [129, 181], can
avoid such undesirable situation. In addition, message-passing algorithms usually scales almost linearly
with the number of edges, which makes it applicable to large real-world networks. Based on message-
passing approach, Altarelli et al. [46] developed the BP and max-sum (MS) algorithms for the problem
of optimal immunization for SIR and SIS model.

For each configuration s = (s1, s2, . . . , sN), the following energy function is considered

ε(s, m) = μ
∑
i∈V

sici + ε
∑
i∈V

mi, (16)

where si ∈ {0, 1} (si = 1 if i is immunized, and si = 0 otherwise), ci is the cost of immunizing node i
and mi is the probability that i is eventually infected in the case of SIR model, or the probability that it
is infected in the stationary state in the case of SIS model. The parameters μ and ε control the trade-off
between the cost of immunization and the cost in treating infected patients. The constraint on all feasible
configurations is manifested by the local update equations of mi. Based on the energy function ε(s, m), a
Boltzmann weight e−βE is assigned to each feasible configuration, whereβ is the inverse temperature. Take
the SIR model for an example, the probability mij that node i is infected in the absence of it neighbouring
node j satisfies a set of equations:

mij = q + (1 − q)

⎡
⎣1 −

∏
k∈∂i\j

(1 − pmki)

⎤
⎦, (17)
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22 S. PEI ET AL.

where q is the self-infection probability, p is the transmission probability and ∂i\ j denotes the neighbours
of node i excluding j. Then the marginal probability mi that node i is eventually infected is

mi = q + (1 − q)

[
1 −

∏
k∈∂i

(1 − pmki)

]
. (18)

Based on the locally tree-like assumption, BP equations can be derived and solved through iteration
making use of the properties of convolutions of messages. As β → ∞, the Boltzmann distribution is
concentrated on the optimal configuration with the lowest energy cost. In addition, the MS equations can
be developed to find the nearly optimal set of immunized nodes. In simulations, MS algorithm performs
better than the topological-based heuristics, greedy algorithm as well as SA.

In a recent work by Min [182], the message-passing approach was used to calculate analytically the
expected size of epidemic outbreaks originated from a single seed. It was found that, while the probability
of triggering an epidemic outbreak depends on the location of the seed, the final size of the outbreak is
insensitive to the seed once it occurs. This approach is also applicable to weighted networks.

For ICMs, two important problems are connected: the optimal selection of nodes to either minimize
or maximize the influence. The minimization problem, equivalent to optimal percolation, aims to find the
‘superblockers’ that should be removed to make G∞ as small as possible. Instead, ‘superspreaders’ are
those that maximize the average influence if selected as seeds. Radicchi and Castellano [183] performed
an extensive analysis over a range of real-world networks and found that these two optimization problems
are not equivalent, that is, superblockers are not superspreaders. The identification of superblockers is
based purely on the topology of the network, while superspreaders in influence maximization problem
are strongly dependent on the parameters of the spreading dynamics.

4.3 Summary

We summarize features of the methods introduced in this section in Table 2. For greedy approaches,
the central task is to estimate the influence of each node, using either Monte Carlo simulation or local
structural information. Following this idea, its improvement is designed along two directions: avoiding
unnecessary simulations or develop better local proxies for influence. The performance of greedy algo-
rithms is guaranteed for dynamics with submodular property. The message-passing approach calculates
the spreading outcomes by solving a set of BP equations, thus considers the problem from a global
viewpoint. In addition, there is no requirement for the submodular property.

5. Dynamics with discontinuous transitions

Threshold models and k-core percolation are frequently used to describe cascading processes with dis-
continuous phase transitions in various disciplines, for instance, failure propagation in infrastructure [94],
diffusion of innovations in social networks [184] and adoption of new behaviours [185]. By definition,
k-core percolation is a special case of a more general class of threshold models where each node has a
fixed threshold k. The fundamental difference from threshold models to ICMs is that, in threshold models,
the state of a node is collectively determined by the states of all its neighbours. As a consequence, the
impact of perturbing one node can propagate to a vast area of the network through long-range chains
of interactions, manifested by a discontinuous phase transition in network dynamics. In this section,
we first introduce methods developed for LTMs using greedy strategy, BP and CI, and then discuss
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Table 2 Summary of some methods developed for influence maximization in ICMs.

Name Description Ref

Monte Carlo simulations Greedy approach, submodular function, performance
guaranteed within a factor (1 − 1/e)

[22]

Cost-Effective Forward
algorithm (CEF)

Consider non-unit cost, performance guaranteed within a
factor (1 − 1/e)/2

[146]

Cost-Effective lazy forward
(CELF)

Fewer Monte Carlo simulations, higher efficiency, heap
structure

[146]

Percolation-based approach Map to bond percolation, use subgraph to estimate influence [148]
Degree discount algorithm Direct influence between immediate neighbours [148]
Maximum influence

arborescence (MIA)
Maximum influence path, Dijkstra shortest-path algorithm,

arborescence structure, trade-off between computational
efficiency and performance

[149]

Community-based algorithm Community detection, dynamic programming algorithm [152]
Message-passing approach Belief propagation, Max-Sum algorithm, SIR and SIS

model, solved through iteration
[46]

Message-passing approach Expected size of epidemic outbreaks, insensitive to origin,
applicable to weighted networks

[182]

algorithms designed for k-core percolation. Note that algorithms designed for LTMs are applicable to
k-core percolation.

5.1 Linear threshold models

LTMs have several different forms. A typical LTM is defined on a weighted network G = (V , E,ω),
where ω : V × V → [0, 1] is a weight function and ω = 0 iff the corresponding edge does not exist.
Similar to ICMs, the spreading process in LTMs is initiated by a set of seeds while all other nodes are
inactive. In following steps, a node is activated if the sum of weights of its active neighbours reaches its
predefined threshold value θi, that is,

∑
j∈∂i ωij ≥ θi, where ∂i stands for the set of neighbours of node

i. In another form, a node is activated if it has at least a certain number of active neighbours. In this
subsection, we discuss algorithms based on greedy approach, BP and CI.

5.1.1 Greedy approach The greedy algorithm is also applicable to LTMs. For a special class of LTMs
where the weight of each edge and the threshold of each node are drawn uniformly from the interval
[0, 1], it was proved that its influence function is submodular [22]. Therefore, the influence maximization
problem in this class of LTMs can be approximately solved by greedy algorithms.

Like ICMs, a LTM can be also mapped to a modified percolation process defined as follows: each
node i picks at most one of its incoming edges, with probability ωji to select the edge from j to i and
1 − ∑

j ωji to select none. The selected edges are defined as live. Considering the subgraph G′ composed
of live edges, Kempe et al. [22] proved that for a given set S, the number of nodes activated by S in LTMs
has the same distribution with the number of reachable nodes of S in the subgraph G′.

Using the same mapping, Chen et al. [149] gave an efficient approximation of the influence of an
individual node in a local subgraph. In cases where the weights ωij and ωji are not symmetrical, the
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24 S. PEI ET AL.

undirected graph G can be transformed into an equivalent directed graph, where edges from i to j and
from j to i are both included. Using the randomized algorithm of Cohen [186], the influence of a set
S is quantified by the number of nodes reachable from S in the subgraph G′. Although computing the
exact influence in a network is #P-hard, this approximation based on directed acyclic graph (DAG) can
be finished within linear time. In order to further accelerate the calculation, a local DAG (LDAG) is
considered instead of DAG. Validation of this approximation is supported by the exponential decay of
influence with the propagation length. The construction of LDAG should include a majority part of
influence from other nodes while discarding the nodes with small influence. Similar to the idea in Ref.
[149], a threshold is introduced to control the size of LDAG, so that the trade-off between efficiency and
accuracy can be tuned. Once the LDAG is constructed, the incremental influence of each node can be
quantified with great efficiency. As a result, the LDAG algorithm is scalable to networks with millions
of nodes and is among the best greedy algorithms in performance.

The LDAG algorithm assumes that the influence of a node is mainly bounded within its LDAG.
However, if the spreading process starting from a node can reach outside its LDAG, the estimation of
influence in the LDAG algorithm might be inaccurate. Besides, the algorithm depends heavily on the
proper choice of a high quality LDAG, which is an NP-hard problem itself. To avoid these problems,
Goyal et al. [147] developed the SIMPATH algorithm in which the influence of a node is quantified
by enumerating the simple paths starting from it. Although this problem is also #P-hard, it can be
well approximated with high efficiency by enumerating paths within a small neighbourhood. With this
approximation, the influence of a set S can be calculated as the sum of influence of each node in it on
appropriately induced subgraphs. Similar to the arborescence structures constructed in Ref. [149], a tuning
parameter is introduced to control the size of the neighbourhood, which leads to a direct trade-off between
the accuracy and computational efficiency. To reduce the number of estimation calls in SIMPATH, a vertex
cover optimization was introduced so that only the influence of nodes in the vertex cover set needs to
be computed. For the rest of the nodes, their influence can be derived from their neighbours. Besides, as
the seed set S grows larger, a look ahead optimization can be made to accelerate the estimation: It picks
the top l most promising candidates as a batch in the start of an iteration and shares the marginal gain
computation within the batch. Extensive experiments on real datasets show that compared with the basic
greedy algorithm, the SIMPATH algorithm is more efficient, consumes less memory and produces seed
sets with larger influence.

The performance of most greedy algorithms mentioned above is guaranteed thanks to the submodular
property of the influence function. However, for a general LTM with fixed weights and thresholds, the
influence function is not always submodular [22]. An important class of LTM that may not be submodular
is defined as follows: a node i is activated only after a certain number mi of its neighbours are activated.
The variation of threshold mi can lead to two qualitatively different classes of cascades featured by either
continuous or discontinuous phase transitions. For instance, in the special case when mi = ki −1 (ki is the
degree of node i), the scale of propagation experiences a continuous phase transition [20]. In contrast, for
k-core percolation and bootstrap percolation, a first-order, or discontinuous phase transition may appear
[44]. Solutions to the influence maximization problem in LTMs without submodular property require a
better understanding of the physical mechanism of the spreading process, and will be introduced in detail
in following subsections.

5.1.2 BP algorithms For the influence maximization problem on a general LTM, Altarelli et al. [60]
regarded it as a non-typical trajectory deviated from the average behaviour of dynamics initiated by
randomly chosen seeds. To explore the dynamical properties of non-typical trajectories of general LTMs,
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Altarelli et al. [47] proposed a BP algorithm that could estimate statistical properties of non-typical
trajectories and found the initial conditions that lead to cascading with desired properties. In contrast to
ICMs, the trajectory of a given LTM is determined solely by its initial condition. Due to the irreversibility
of LTM dynamics, the spreading process can be parameterized by a configuration t = (t1, t2, ...tN),
where ti ∈ T = {0, 1, ...T , ∞} is the activation time of node i. Considering the properties of LTM, the
dynamical rule can be represented by the constraint on the activation time of a node and its neighbours
[47]: ti = φi({tj}), where

ti = φi({tj}) = min

{
t ∈ T :

∑
j∈∂i

ωjiI[tj < t] ≥ θi

}
. (19)

Based on this static parametrization of LTM, the following Boltzmann distribution is considered:

P(t) = 1

Z
e−βε(t) ∏

i∈V

ψi(ti, {tj}), (20)

where ψi(ti, {tj}) = I[ti = 0] + I[ti = φi({tj})], Z = ∑
t e−βε(t) ∏

i∈V ψi(ti, {tj}). The most common form
of the energy function is ε(t) = ∑

i εi(ti), where εi(ti) = I[ti = 0] − εI[ti < ∞]. For ε = 0, the
distribution degenerates to the spreading dynamics initiated by a random set of seeds.

In order to avoid short loops in the factor graph that describes the constraints of a configuration, a
dual factor graph is constructed with a variable node (ti, tj) introduced to each edge (i, j). The obtained
dual factor graph is locally tree-like if the original network is so. This allows for the application of the
cavity method. Denote Pj(tj) as the marginal probability that node j is activated at time tj. In a tree-like
factor graph, it can be calculated as

Pj(tj) ∝
∑

{ti}i∈∂j

e−βεj(tj)ψj(tj, {ti})
∏
i∈∂j

Hij(ti, tj), (21)

where Hij(ti, tj) is defined as the probability that nodes i and j get activated at ti and tj, respectively in
the absence of the constraint ψj and the energy term εj. This equation computes the contribution from all
neighbours of node j. In the dual factor graph, Hij(ti, tj), named cavity marginals or ‘beliefs’, satisfy local
constraints described by a set of BP equations. In particular, the recursive relation of the cavity marginal
Hij(ti, tj) on the dual factor graph defines the following belief BP equations [47]:

Hij(ti, tj) ∝ e−βεi(ti)
∑
{tk }
ψi(ti, {tk})

∏
k

Hki(tk , ti). (22)

Here ψi(ti, {tk}) is the local constraint on links connected to node i (except node j), the product term
computes the contribution of ‘beliefs’ from the neighbours of node i excluding node j, the summation
term considers different occasions of tk for neighbours of node i and e−βεi(ti) defines the weight for
energy εi(ti) using the Boltzmann distribution. The BP equations are solved through iteration. Once the
fixed values of the cavity marginals are obtained, the marginal Pj(tj) and other statistics of non-typical
trajectories, such as the entropy and distribution of activation time, can be subsequently computed.

On homogeneous random regular graphs, the BP equations can be simplified to a self-consistent
equation of a single marginal. Analysis for different threshold values indicates quantitative difference

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/8/2/cnz029/5543798 by guest on 28 N
ovem

ber 2022



26 S. PEI ET AL.

(a) (b)

Fig. 8. Performance of the CI-TM algorithm in ER and SF networks. (a) Size of active GC Q(q) as a function of the fraction of seed
q for ER networks (N = 2×105, 〈k〉 = 6). The CI-TM algorithm is compared with high degree adaptive (HDA), high degree (HD),
PageRank (PR), k-core adaptive (KsA), Random and the Max-Sum (MS) algorithm. Inset shows the critical values qc identified by
HDA and CI-TM for different mean degrees. (b) Results for scale-free networks (N = 2 × 105, γ = 3). Inset presents the critical
values qc for different power-law exponents γ . Figure reuse from [188] is permitted by Springer Nature.

in the distribution of activation time P(t) for the regimes of continuous and discontinuous transitions.
Specifically, for continuous transitions, P(t) is monotonically decreasing. On the contrary, P(t) shows
a second peak for discontinuous transitions, corresponding to the abrupt cascade activation. In order to
obtain the optimal set of seeds, Max-Sum equations can be derived by setting the inverse temperature
β → ∞ in the energy function [47]. Authors performed numerical experiments on a real-world network
(the Epinions network) with an energy function ε(t) = ∑

i{ciI[ti = 0] − riI[ti < ∞]}, where ci is the
cost of seeding node i and ri is the revenue generated by the activation of node r. The Max-Sum algo-
rithm was compared with competing methods including greedy algorithm based on energy computation
(GA), greedy algorithm based on HITS (HITS), high degree (Hubs) and SA. The Max-Sum algorithm
outperforms other approaches by selecting the seed set that best trade-offs the revenue and cost. The per-
formance of Max-Sum algorithms on synthetic networks also outperforms a range of centrality metrics,
as shown in Fig. 8.

Extending the work under the assumption of replica symmetry, Guggiola and Semerjian [100] studied
the minimal contagious set problem for LTM dynamics with and without a constraint on the maximal acti-
vation time T . In this theoretically impressive work, authors aim to find the theoretical limit of the minimal
contagious set (i.e. the minimal seed set that can activate the entire graph) in random regular graphs using
the cavity method with the effect of replica symmetry breaking. Following the theoretical development,
a survey propagation like algorithm [187] is investigated on single instances of random regular graphs
to find the exact seed set. It was found that the survey propagation algorithm achieves near-optimal per-
formance for small activation time limit. For a large activation time limit, authors reported convergence
issues in iteration that cannot be effectively solved by a simple damping. However, stopping the iterations
after a predefined time proved to be a pragmatic and satisfactory strategy. In this work, authors tested
the algorithm on random regular graphs; in practice, how survey propagation algorithm works for more
realistic networks needs to be tested. Readers interested in the survey propagation algorithm can find
details in Ref. [100].
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5.1.3 CI in threshold model The CI theory can be generalized to deal with the influence maximization
in general LTMs [188]. For a network G(V , E) with N nodes and M links, we use the vector n =
(n1, n2, . . . , nN) to record whether a node i is chosen as a seed (ni = 1) or not (ni = 0). The LTM
spreading starts from a q = ∑

i ni/N fraction of active seeds and evolves following a threshold rule: a
node i becomes active if it has at least mi active neighbours. Here, the threshold mi is an integer ranging
from 1 to the degree of node i. Further, we introduce νi to indicate the final state of node i: active (νi = 1)
or inactive (νi = 0). For a given q fraction of seeds, the influence maximization problem aims to find the
optimal set of seeds so that the size of active population is maximized.

For each link i → j, we introduce a binary variable νi→j as the indicator of i being in the active
state assuming node j is disconnected from the network. For locally tree-like networks, νi→j satisfies a
set of self-consistent message-passing equations. Different from the case of optimal percolation in Ref.
[20], the zero solution is not a fixed point. As a consequence, the stability analysis around zero solution
in Ref. [20] is no longer valid for LTMs. However, the solution can be approximated through iteration
of the linearized system. By linearizing the equations, it was found that the subsequent activation of
nodes in each iteration only depends on the number of subcritical nodes, defined as the nodes with mi −1
active neighbours (i.e. nodes whose activation can be triggered by one more active neighbour). Moreover,
subcritical nodes can form long subcritical paths that generate long-range cascade of activation, which
is core to the discontinuous transition in LTM dynamics. Following this idea, the CI-TM (Collective
Influence in Threshold Model) algorithm was proposed that recursively selects nodes with the largest
CI-TM score. The CI-TM score enumerates the number of subcritical paths starting from each node,
and uses that to quantify nodes’ spreading capability. With an O(N log N) computational complexity, the
efficient CI-TM algorithm is applicable to large-scale networks. In numerical simulations, the CI-TM
algorithm outperforms the greedy algorithm and several widely used heuristic centralities, and achieves
comparable performance to the Max-Sum algorithm in synthetic random networks (see Fig. 8).

5.2 The k-core percolation

Because k-core percolation is a special case of LTMs, influence maximization algorithms developed for
general LTMs can be naturally extended to work for k-core percolation.

In statistical physics and combinatorial optimization, several theoretical works have explored the lower
and upper bounds on the size of the minimal set to destroy the k-core. In the evaluation of approximating
algorithms, these results can help us to assess how far the estimated size of minimal contagious set
is from the theoretical limit. For instance, Bau et al. [110] studied the decycling numbers of random
regular graphs. As stated before, the decycling process is equivalent to destroying the 2-core of networks.
For a random cubic graph G that all nodes have degree 3, it was proven that the decycling number
φ(G) = �N/4 + 1/2� as the graph size N → ∞. For a general random d-regular graph G with N nodes
(d ≥ 4), authors proved that φ(G)/N is bounded below and above asymptotically almost surely by certain
constants that depend solely on d. In particular, the lower and upper bounds can be calculated by solving
an algebraic equation and a set of differential equations, respectively. Janson and Thomason [189] found
that, for sparse random graphs or random regular networks with N nodes with N → ∞, the number
of nodes that must be removed so that no component with more than k nodes exists is essentially the
same for all values of k if k → ∞ and k = o(N). Reichman [103] showed that the size of a contagious

set is bounded from above by
∑

v∈V min
{

1, k
d(v)+1

}
in the destruction of k-core (d(v) is the degree of

node v). Later, using the cavity method with replica symmetry breaking, Guggiola and Semerjian [100]
obtained several conjectures on the size of minimal contagious sets for k-core percolation in random
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regular graphs. In particular, authors conjectured that the minimal contagious set size is 1/6 for 5-regular
random graphs with a threshold of 3, and 1/4 for 6-regular with threshold 4. In addition, they also proposed
the conjecture for (k+1)-regular networks with the threshold k that the minimal contagious set size is
1 − 2(ln k)/k − 2/k + O(1/(k ln k)). According to this conjecture, the minimal contagious set size 3-
regular (cubic) random graphs with a threshold of 2 is 1/4, which is in agreement with the decycling
number of cubic random graphs φ(G)/N → 1/4 obtained in Ref. [110]. Sun et al. [190] also proposed
a lower bound of the network dismantling problem by analysing specific 2-core subnetworks of many
real-world networks that have heterogeneous degree distribution. Coja-Oghlan et al. [191] explored the
minimal contagious set problem on graphs with expansion properties.

Recently, Schmidt et al. [133] studied the minimal contagious sets for k-core percolation in random
networks. In this work, authors proposed a generalized CoreHD algorithm, in which nodes with the
highest degree in the k-core are recursively removed until the k-core completely collapses. To analyse the
property of this algorithm, the generalized CoreHD-guided k-core removal was translated to a random
process on the degree distribution of the graph [192, 193]. The running time of the process, characterized
by a set of non-linear ordinary differential equations, describes the behaviour of the algorithm on a random
graph. By analysing the stopping time, new upper bounds on the minimal contagious set were obtained,
which improve the best currently known ones in Ref. [100, 110]. This approach is applicable not only to
random regular graphs, but also to random networks generated from the configuration model with a given
degree distribution. Inspired by the analysis of the CoreHD algorithm, an improved algorithm, called
WEAK-NEIGHBOR, was developed. In this algorithm, instead of removing high-degree nodes, nodes
with the highest value ki −∑

j∈∂i kj/ki in the k-core are removed (ki is the degree of node i). For networks
with bounded degree, the algorithm has O(N) complexity, where N is the network size. In numerical
experiments, the WEAK-NEIGHBOR algorithm improves over the generalized CoreHD algorithm and
CI-TM algorithm in a range of k-core percolation processes in random regular graphs.

5.3 Summary

For LTMs, the major effort in greedy approach is to develop more efficient and accurate estimation of
marginal increments using local network structure. This pursuit has inspired different techniques designed
for this goal. Most greedy methods quantify the marginal increment by the number of nodes that would be
activated if a node is selected as a seed. The CI-TM algorithm, in contrast, uses the number of subcritical
paths attached to a node to estimate the marginal increment. BP approaches solve the problem as a global
issue through iteration, and can flexibly incorporate the cost of activating seeds. Apart from devising
practical methods to solve the influence maximization problem for LTMs, analytical works on random
regular graphs would help to identify how far away current approaches are from the theoretical limit of
the size of optimal seed set. Features about the introduced methods are summarized in Table 3.

6. Conclusions and discussions

With an increasing number of real-world complex systems formulated as networks, a theory for identify-
ing influencers is required to facilitate a better understanding and control of various dynamical complex
systems. Over the years, this problem has been extensively studied in different contexts by physicists,
mathematicians, sociologists, computer scientists, etc. In this survey, we review recent advances in this
area. Because this topic spans a wide spectrum of research, we cannot report every relevant work exhaus-
tively. However, we try to organize the survey in a way such that recent developments made in several
fields of broad interest are covered.
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Table 3 Summary of some methods developed for influence maximization in LTMs and k-core
percolation.

Name Description References

Monte Carlo simulations Greedy approach, submodular function, performance
guaranteed within a factor (1 − 1/e)

[22]

Percolation-based approach Map to bond percolation, use subgraph to estimate
influence, O(N) complexity

[149]

Local directed acyclic graph
(LDAG)

Decay of influence with the propagation length,
discard the nodes with small influence

[149]

SIMPATH algorithm Enumerating simple paths, look ahead optimization,
trade-off between accuracy and efficiency

[147]

Belief-propagation algorithm Large deviations of LTM dynamics, consider cost and
revenue, Max-Sum equations, solved by iteration
until convergence

[47]

Survey propagation like
algorithm

Near-optimal performance, solved by iteration until
convergence, applied to random regular graphs

[100]

Collective Influence in
Threshold Model (CI-TM)

Greedy approach, based on linearized
message-passing equations, use subcritical clusters
to estimate influence, O(N log N) complexity

[188]

CoreHD Remove high-degree nodes in 2-core, perform well on
loopy networks, O(N) complexity

[132]

WEAK-NEIGHBOR Improvement over the generalized CoreHD algorithm
and CI-TM algorithm, O(N) complexity

[133]

Despite great advances in influencer identification, many ongoing problems and directions exist that
need to be addressed in future works. First, as shown in several theoretical works, even for homogeneous
structure such as random regular networks, there is still a gap between the result obtained from the state-
of-the-art algorithms and its theoretical limit. This provides a room that we can improve in algorithm
design. Second, the topological structure of real-world complex systems can be much more complicated
than the case considered in ideal conditions. In a recent comparative analysis, it was found that recently
proposed techniques perform well only on specific network types [194]. Further, connections may be
time-varying in temporal networks [195], or possess complicated interlayer interactions in multiplex
networks [196, 197]. Third, in many systems, links are often of different types with distinct functions.
These systems cannot be described by the simple network structure discussed before, and do not even
admit a formal definition of influencers. In future works, these open problems remain to be explored in
more detail.

In terms of applications, use of influencer identification theory in biological, social and engineering
systems is still very limited. As some advanced methodologies in statistical physics are technical and
challenging to interpret, applying the latest progresses of influencer identification in specific real-world
systems can better illustrate and disseminate these techniques. Moreover, current methods are mostly
developed under ideal conditions. In real-world systems, errors or noises inevitably exist [198, 199].
How to quantify and alleviate the impact of errors or noises is of great practical values in applications.
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In addition, certain non-dynamical factors beyond the simplified assumption in pure modelling studies,
for example, human activity [200–208], homophily [209–211], complex contagion [185, 212] and social
influence bias [213], may need to be considered. This calls for a deeper understanding of the systems
under study and a more integrative application of the influencer identification theory.

Funding

The National Institutes of Health (R01EB022720, U54CA137788 and U54CA132378 to H.A.M.);
National Science Foundation (1515022 to H.A.M.); Army Research Laboratory (W911NF-09-2-0053
to H.A.M.); and China Scholarship Council and the Academic Excellence Foundation of BUAA for PhD
Students to J.W.

References

1. Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. (2015) Epidemic processes in
complex networks. Rev. Mod. Phys., 87, 925.

2. Zhang, Z.-K., Liu, C., Zhan, X.-X., Lu, X., Zhang, C.-X. & Zhang, Y.-C. (2016) Dynamics of information
diffusion and its applications on complex networks. Phys. Rep., 651, 1–34.

3. Bullmore, E. & Sporns, O. (2009) Complex brain networks: graph theoretical analysis of structural and
functional systems. Nat. Rev. Neurosci., 10, 186.
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