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Abstract

Capturing how the Caenorhabditis elegans connectome structure gives rise to its neuron

functionality remains unclear. It is through fiber symmetries found in its neuronal connectiv-

ity that synchronization of a group of neurons can be determined. To understand these we

investigate graph symmetries and search for such in the symmetrized versions of the for-

ward and backward locomotive sub-networks of the Caenorhabditi elegans worm neuron

network. The use of ordinarily differential equations simulations admissible to these graphs

are used to validate the predictions of these fiber symmetries and are compared to the more

restrictive orbit symmetries. Additionally fibration symmetries are used to decompose these

graphs into their fundamental building blocks which reveal units formed by nested loops or

multilayered fibers. It is found that fiber symmetries of the connectome can accurately pre-

dict neuronal synchronization even under not idealized connectivity as long as the dynamics

are within stable regimes of simulations.

Introduction

Advances in reconstructing synapse resolution wiring diagrams of various model organisms

[1–6], demand the development of new computational tools that make predictions of how

neuronal wiring relates to neuronal function [7]. The nematode C. elegans is an ideal system to

prototype such approaches because of its fully mapped and well characterized small nervous

system of just 302 neurons [1, 8–10]. Various studies have identified structure in the wiring

architecture of the worm connectome e.g., over-represented network motifs [8, 11], small

worldness [12], rich club topology [13] as well as community structure and functional layers

[9, 14–16]. While such features suggest functional implications such as sensory-motor flow or

wiring economy, they typically fall short of making concrete predictions for how neurons

dynamically interact with each other.
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One notable type of dynamics observed in C. elegans is the brain-wide synchronization of

neural activity across well-defined ensemble of neurons; where a general notion of synchroni-

zation is that larger ensembles of neurons have correlated activity patterns [17–19]. Under-

standing how such synchronizations are supported by the underlying connectome is a major

challenge in neuroscience and can provide mechanistic insights into how the brain processes

information. We recently showed that primary and secondary input similarities predict pair-

wise synchronizations in C. elegans neuronal dynamics [17] hinting at symmetries in the larger

network context underlying such synchronisations. A mathematically precise description of

such input similarities was missing with which symmetries could be uncovered. Therefore, it is

important to better define the structures in the connectome that lead to the synchronization of

groups of neurons [20, 21] based on their inputs.

Synchronization is ubiquitous across all organisms and at different scales. Some examples

are gene co-expression patterns [22], metabolism, hormonal regulation, cell communication,

and cardiac muscle. As such, the results on this direction may be generalized to the different

levels of synchronization in biological networks.

From a theoretical perspective, it is well known that the symmetries of the underlying net-

work, including automorphisms (orbits) [23–25] and fibrations (fibers) [26–30], can strongly

determine the dynamics of the system leading to synchronization of neurons within clusters

[31–33], i.e. cluster synchronization. Orbits are related to particular permutations (automor-

phism) of the network that preserve the network’s adjacency connectivity structure- including

both in-degree and out-degree. The cluster of nodes subject to these permutations are called

orbits, and nodes in orbits synchronize their activity under a suitable dynamical system that is

admissible with the network [23, 29, 33]. The nodes in any of these clusters synchronize due to

receiving equal amounts of input from the same or equivalent sets of nodes. This procedure

can go on ad infinitum, meaning to be extended for as many existing network nodes. This syn-

chronization is explained in more detail further in the paper.

The requirements for the existence of orbits are strict, as they must preserve the entire adja-

cency matrix network structure. Synchronization of neuronal activity patterns, on the other

hand, only requires constraints on the nodes’ inputs (in-degree), not the outputs (out-degree).

Fibrations are symmetries that generate automorphisms only requiring the invariance of

the input tree structure of each node [27, 28, 32, 34–36]. These symmetries form symmetry

groupoids rather than symmetry groups of automorphisms where these define fibers similarly

to orbits, where nodes in the same fiber synchronize [37]. In this sense, a groupoid is a more

general algebraic structure than a group, where a groupoid need not be associative; by such

fibers are more general than orbits, as they are related to equivalent classes which are referred

to in the math community as balanced coloring. Every orbit is a fiber, but not every fiber is an

orbit. Therefore fibers capture more patterns of cluster synchronization than orbits. Therefore,

we here propose that fibers are a more general and mathematical defined description of con-

nectivity that relate to the input similarities investigated in ref. [17]. In [37] we have found

automorphisms in the structure of the C. elegans connectome, specifically in the gap junction

and chemical synapses networks of motor circuits involved in forward and backward locomo-

tion. Here we generalize this study to search for more general patterns of symmetry fibrations

and theirs associated fibers of cluster synchronization in the C. elegans locomotive

connectome.

Finding perfect symmetries in any biological network is highly unlikely, therefore we expect

biological networks to exhibit more fibrations symmetries than orbit symmetries, due to the

milder constraint of fibers as compared to orbits, (if any symmetries are detected in the first

place). In [26], we have found that gene regulatory networks of many organisms spanning

from simple bacteria to humans are composed of fibration symmetries. These symmetries

PLOS ONE Fibration symmetries and cluster synchronization in the Caenorhabditis elegans connectome

PLOS ONE | https://doi.org/10.1371/journal.pone.0297669 April 10, 2024 2 / 41

simulator (MIT license). The only additional Matlab

toolboxes besides the basic ones in Matlab

R2021b that are needed are the Statistic and

Machine Learning toolbox and the Fuzzy Logic

toolbox. This Matlab app also contains tools not

mentioned here which can be used to further

explore synchronization in the networks studied in

our manuscript. Within this repository there is a

(Sage 9.3) python notebook used to find orbit

partitions, additionally this repository also contains

all files needed to reproduce all of the networks

explored in this paper. To reproduce the fibration

partitionings found in our paper we implemented a

code that can do such which can be found here:

https://github.com/makselab/fibrationSymmetries.

Funding: Funding leading to the results of this

work was provided to both H.M. and M.Z. by The

National Institute of Biomedical Imaging and

Bioengineering and National Institute of Mental

Health through 1023 the National Institute of Health

BRAIN Initiative Grant R01 EB028157. https://

www.nibib.nih.gov/ https://www.nimh.nih.gov/

https://braininitiative.nih.gov/ M.Z. is supported by

the Simons 1024 Foundation (543069). The

Research Institute of Molecular Pathology is

funded by Boehringer Ingelheim. https://www.

simonsfoundation.org/ https://www.boehringer-

ingelheim.com/ The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0297669
https://github.com/makselab/C.-elegans_locomotive_simulator
https://github.com/makselab/fibrationSymmetries
https://www.nibib.nih.gov/
https://www.nibib.nih.gov/
https://www.nimh.nih.gov/
https://braininitiative.nih.gov/
https://www.simonsfoundation.org/
https://www.simonsfoundation.org/
https://www.boehringer-ingelheim.com/
https://www.boehringer-ingelheim.com/


partition the network into synchronized fibers which are then the building units characterizing

the structure of such networks. As such, fibrations can be thought of as the “building blocks”

of a network, in the sense that they represent the fundamental units or components that can be

combined to form larger and more complex structures or systems. According to [38], the

building blocks of a network can be thought of as the “units of computation” in a neural net-

work, similar to how transistors constitute the basic building blocks of electronic circuits.

The concept of building blocks as a way to modularly construct neural networks with spe-

cific desired properties is familiar in the field. In [39–41] a framework has been proposed for

understanding the function and organization of neural networks in terms of building blocks

known as “network motifs.” Network motifs are small, recurring patterns of connections

within a network that are thought to perform specific functions or play a role in shaping the

network’s overall structure and function.

Symmetries in the connectome can only tell us about the existence of synchronized solu-

tions but not about the stability of such solutions. If a group of neurons were prepared to be in

a synchronous state, theory predicts that these will stay in such a state indefinitely if no noise is

present [25, 42]. However, if the system were to start in any other initial condition, would it

evolve towards a synchronized state, such as a fixed point? If so, the synchronous state is con-

sidered to be stable. If not, the synchronous state is considered to be unstable, such that most,

if not all, neurons have different values at any given time (asynchronous). The structure of the

connectome alone cannot predict their stability. Stability also depends on the particular system

of equations that define the neural dynamics of the system. It is not a property that is inherent

to the fibration symmetry itself but rather a property that emerges from the interactions

between fibers and their surroundings through the dynamical system. Thus, a single symmet-

ric connectome leads to synchronous solutions, but these solutions could have different stabil-

ity properties according to different dynamical systems of equations. Since the same

connectome with a different dynamic system may lead to a stable or unstable solution, stability

needs to be investigated for each particular dynamical system of equations [25, 42].

In this paper, we explore the structure-function relationship of a version of the neuron net-

work in C. elegans used in [26] related to the locomotion function (as described later) to char-

acterize its fibration symmetries and its comparison with automorphisms. Generalizing the

results found in [37] on the existence of automorphisms, here we further studied the more

general fibrations, their associated fiber partitions, and their relations with the orbital parti-

tions obtained from automorphisms. We apply a set of simplifications to make our theoretical

and modeling approaches tractable and which are prerequisite to identify the orbits and fibers

in this study in a mathematically concise manner. First, we focus on sub-networks that have

been assigned to distinct behavioral functions of C. elegans. Next, we study the graphs of

chemical synapse and gap junction networks. It is true that any nervous system relies on both

gap junctions and chemical synapses. However, it is known that both types of connections

contribute differently to the overall activity of a given circuit. For example, gap junctions are

known to be more important for the transition between the backward and forward circuits

rather than the generation/propagation of these behaviors separately [43]. Moreover, specifi-

cally in the backward circuit, gap junction removal does not disrupt A type motor neuron syn-

chronicity, but reduces the strength of these motor neurons. This happens because the inter-

neuron AVA activates A type motor neurons through acetyl cholinergic signaling and is the

major driver of this reverse locomotion [44]. Additionally, as will be seen, simulations of a net-

work of neurons solely composed of gap junction connections with no driving input stimuli

will settle into a global synchronous state, meanwhile a network composed solely by chemical

synapses and no external stimuli will settle into different clusters fully dependent on the
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network’s symmetries Altogether, despite agreeing that studying these connections in separate

might not be ideal, there is previous experimental evidence for their individual contribution.

Moreover, we apply subtle modifications (repairs) since the mathematical procedures

applied here are strict and do not account for variability in connectome data and even slight

deviations from perfect symmetries. Lastly, we use simplified neuronal models that treat each

network node as if they had identical dynamical properties. These models solely serve as a test

case to confirm that our predictions about cluster synchronizations hold in the context of a

dynamical system, in contrast to a sole static neuronal connectome. Below, we will discuss the

implications of our findings, made under these simplifications, for the worms neuronal net-

work functions and behaviors it produces. We compare the synchronous solutions obtained

from a dynamical system of interacting neuron equations with the ones predicted by the fibers

of the connectome and investigate their stability under different initial conditions. Simulating

the dynamics of neurons is achieved by mapping admissible in-degree dependent coupled

ordinary differential equations (ODEs), as explained further in the paper. We characterize the

locomotion connectome into fiber building blocks organized into classes according to some of

their structural properties, such as, how many inputs these have and a characterization of how

many closed paths these inputs form with the fiber. These building blocks are similar to those

found in genetic networks [26] implying the generality of these blocks for the structure of bio-

logical networks.

We follow two steps. First, we partition the neuron network using fibrations and automor-

phisms. As anticipated, we find that biological networks tend to have more fibers than orbits

when examining a directed network of chemical synapses. In the network of gap junctions, the

fibers are the same as the orbits as expected for an undirected network. Next, we investigate

the stability of the synchronous solutions predicted by the symmetries when the network is

exposed to different external stimuli using ordinary differential equations (ODEs). Initially, we

observe that without an external driving force the ODEs settle into the same synchronization

groups as predicted by symmetries and expected by theory. Then we examine the synchroniza-

tions that occur in the network when it is driven by an external driving input; its observed that

these stimulated neurons react in a stable fashion similarly like a set of neurons in electrophysi-

ological studies when stimulated with an external current source [45, 46]. We find that insta-

bilities can appear above certain magnitudes for the external input which are model

dependent. We then simulate the case where the network’s weight edges are not fully known

and study the impact of this missing information on the synchronization states. We found that

the effects of varying weights impact the synchronicities of the networks. The robustness to

change varies among the different types of networks, with the Gap networks being more robust

to change.

We conclude our analysis by focusing on the partition of fibers, which serve as building

blocks for each of the networks studied here. These can be topologically categorized, informa-

tion that in turn can be used to determine the relative stability against perturbations for each

fiber. The symmetries structures and the synchrony patterns we find here could be tested in

in-vivo in the future by opto-genetically silencing or ablating neurons which would affect the

synchronization predicted by fibers. [47, 48]. Some building blocks with different structure

can belong to the same topological classification where their functionality could be tested by

analyzing the similarity of the dynamics of the neurons belonging to the same fiber.

The paper is structured as follows. The locomotion network section for the latter portion of

the Introduction and focuses on the construction of the neurons’ network and the data set

used in this paper. Then in Fibers and orbits the theory used in this paper is introduced which

covers equitable partitioning, fibers, orbits and the methods used for our analysis, followed by

the section Building blocks in which fibers are used to construct elementary sub-networks
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which form the locomotion network. Ending the theory presentation with Admissible ordi-

nary differential equations that outlines the admissible ODEs used to conduct simulation tests

and with Synchronicity measure. After the theory we move into the results with first showing

in Network partitions in the locomotion connectome how the locomotion networks of the C.
elegans are partitioned by fibers and orbits. Additionally the fiber building blocks of the

directed networks are shown. Results are concluded in Network simulations with the synchro-

nicities found from numerical methods solving ODEs applicable to the worm neuron system.

Wrapping up with the sections of Discussion and conclusion Conclusion.

The locomotion network

A comprehensive analysis of orbits across the entire connectome is currently out of reach, due

to computational constraints. Therefore, we focus on two locomotion sub-networks impli-

cated in the generation of two distinct gaits: forward and backward behaviour. One major rea-

son for this selection is the fact that the C. elegans locomotion network has feedfoward

excitatory synapses from the command inter-neurons to their respective motor-neurons,

inducing a highly synchronous state in all neurons which participate in the motor output. In

addition, secRNA seq data has shown that motor-neurons represent the most similar class of

neurons in the worm, which further supports the comparisons made later in this study [49].

The networks present in this paper are manually repaired version of the Varshney connectome

(available at the WormAtlas website [50]). Such repaired networks have been validated by inte-

ger programming repair algorithms, one based on full fibration analysis [51] and another on

quasi-fibrations [35]. The former leads to the network solutions found in [37] and studied

here when provided with a set of groups of neurons belonging to each fiber. The reason behind

such repairs is to bring to the fort front the rich number of symmetries in the raw connectome

with only a few modification to it. Where without modification each neuron exhibits its own

unique symmetry, the slightly modified connectome captures multiple groups neurons belong-

ing to one symmetry. The repairs were done by hand by removing and adding a minimum

amount of edges which would reduce the number of fibrations in each graph by the largest

amount possible given the restriction that the each change of the network was not outside nat-

ural variation of edges of 25% [8, 37], where most modification did not reach the 25% varia-

tion. The repairs allow us to focus on the neurons with evidence to be involved exclusively in

this animal’s forward or backward locomotion. It includes inter-neurons AVB, PVC, and RIB

for the forward system, inter-neurons AIB, AVA, AVD, AVE, and RIM for the backward sys-

tem [52–54] and four classes of motor-neurons: DA, VA for the forward system and DB, VB

for the backward system [55]. The remaining motor neurons (AS, DD, and VD) have not been

included in the studied networks. This strategy is based on previous experimental findings

showing that AS neurons are not mutually exclusively involved in either forward or backward

movement [56]; inhibitory GABAergic DD and VD motor neurons are not strictly required

for movement, i.e. when removed or blocked, the animal moves indistinguishably at a lower

frequency and does not produce higher-frequency undulations. Nevertheless, it does not elimi-

nate the ability to move forward, or backward [57]. The exclusion of DD and VD motor neu-

rons allows partitioning the neurons mentioned above into two not overlapping functional

sets (forward and backward locomotion). This stratagem avoids neurons belonging to multiple

synchronization modes, resulting in more interpretable results.

Neurons in C. elegance can be physically connected through chemical synapses or gap junc-

tions. Chemical synapses are directed connections meaning that a chemical signal can only

propagate in one direction (from neuron A to neuron B and not vice versa) [58]. Gap junc-

tions, on the other hand, can lead to undirected connections, allowing rapid propagation of an
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electrical signal between two connected neurons in both directions [59]. Henceforth, we apply

this simplification and ignore the possibility of rectifying gap junctions [60]. As such, the neu-

ron network in the C. elegans can be represented by two adjacency matrices, one for each type

of connection, chemical synapses and gap junctions. To better comprehend these two types of

connections and their co-occurrence, we redirect the reader to [8].

Removing the inter-connections between the two functional sets of neurons for the forward

and backward locomotion leads to four independent adjacency matrices representing the C.
elegans locomotion system [37]: Forward gap junction (F-Gap), backward gap junction

(B-Gap), forward chemical synapses (F-Chem), and backward chemical synapses (B-Chem)

networks. Note, that this partitioning into forward and backward groups is justified since

activity of these sub-netwoks has been shown to be mutually exclusive and tightly associated

with either one of the two distinct motor programs [61–63]. In the original work of [37], the

networks and their respective adjacency matrices are binary, meaning the connections

between neurons either have a weight of 1 for existing edges or 0 for non-existing edges. In

this paper, we also introduce and analyze the integer-weighted version of these sub-networks,

where weights have positive integer values reflecting the number of synaptic connections

between neurons based on Varshney’s connectome [8]. These weights respect the symmetriza-

tion done by [37] and the fiber partitionings corresponding to the binary versions. This leads

to a total of 4 sub-networks each with two edge weight versions under study.

Materials and methods

Fibers and orbits

The neural networks governing the movement of C. elegans are represented as a graph G =

(NG, EG), where NG is the set of nodes (neurons) with n = |NG| being the number of nodes and

EG is the set of connections among neurons. The set of connections EG can be further decom-

posed into two separate types representing chemical synapses EChem and gap junctions EGap,
where are a more formal definition of a locomotion circuit as a graph would be: G = (NG,

EChem, EGap). Chemical synapse networks consist of directed connections denoted as eu!vG or

eu;vChem from neuron u to neuron v, while gap junction networks consist of undirected connec-

tions denoted as eu$vG or eu;vGap between neurons u and v. A general connection in G would sim-

ply be denoted as eG. A connection is represented as ordered pairs of nodes for directed

connections (u, v), where v is the head node and u is the tail node. We interchangeably refer to

these two types of connections as edges through out the paper. For undirected connections,

two directed connections in opposite directions are used. Each edge has a head node

hðeu!vG Þ ¼ v and a tail node tðeu!vG Þ ¼ u.

Partitioning methods detect clusters of nodes with shared properties in a network. Two

standard methods for partitioning networks into synchronized groups of neurons are Fiber

[26–30] and Orbit partitioning [23–25]. These methods partition the n nodes of a graph G into

groups of nodes which synchronize under admissible ODE dynamics [30–32, 64]. Admissible

ODEs ensure that each node in the network has one ODE which is coupled to other ODEs in

the same way its representative node receives connections. If the initial states of the nodes are

within the stable regime of their given set of ODEs, then the nodes belonging to a partition will

eventually reach synchronicity [29, 65]. Before diving into these methods, we must introduce

the concept of equitable partition.

Loosely speaking, partitioning the n nodes of a graph G into groups that are in-degree con-

serving is an “equitable partitioning”; these groups of nodes are referred to as cluster cells.
More precisely, a partition π of G with cells C1, . . ., Ck is equitable if the number of in-degree

edges from Cj onto a node v 2 Ci depends only on the choice of Ci and Cj. Neurons in the
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same cluster cell have the same balanced coloring [32]. The out-degree can also be considered,

but the in-degree conservation alone is sufficient for synchronization, and is therefore used in

this paper [24, 25]. Fiber and orbit partitioning are examples of balanced colored partitioning

methods with distinct characteristics, which are explained below.

Fibrations, input trees and the minimal balanced coloring. A fiber partitioning relies

on the notion of neighboring nodes. We begin by defining the immediate in-degree neighbor-

ing nodes of a given node v as the multi-set of nodes fulfilling the following condition

tðe1!v
G Þ ¼ ½u : u 2 NG ^ ðu; vÞ 2 EG� ð1Þ

where the multi-set of edges connecting into node v are given by

e1!v
G ¼ ½ðeG; 1Þ : eG 2 EG ^ hðeGÞ ¼ v� ð2Þ

where (eG, i) is a pair given by a positive integer number i indicating the length of a walk termi-

nating in v and an edge at the start of said walk. The definition of a walk, in graph theory

terms, is a finite or infinite sequence of edges which joins a sequence of vertices such that these

sequences can have edge and vertex repeats. A walk is said to be closed when the first vertex

and last vertex of its sequence are the same. For completeness we define the set of walks with

zero length culminating on node v to be empty and the tail nodes to be composed solely by the

node v as described below

e0!v
G ¼ ½ �; tðe0!v

G Þ ¼ ½v� ð3Þ

Given the above the fiber partitioning is associated with the input history of a node, which

includes the input edges it receives from its immediate neighboring nodes, as well as the input

those nodes receive from their immediate neighboring nodes. This notion can be extended an

infinite number of times, resulting in a (possibly infinite) input tree [23]. The input tree for a

node v is denoted as T ðvÞ, which is the complete set of all walks that terminate on node v, giv-

ing rise to a rooted tree graph [28]. Such a structure can be placed in mathematical terms as

T ðvÞ ¼
[N

i¼0

[

m¼tðei!vG Þ

ei!mG ¼

[N

i¼0

[

m¼tðei!vG Þ

½ðeG; iÞ : eG 2 EG ^ hðeGÞ ¼ m�:

ð4Þ

Where N represents the largest length to be considered for the set of walks of length N culmi-

nating in v where for each length there is a layer in the input tree. As an example the first layer

of the input tree of a node v is composed of all the immediate in-degree neighboring nodes of

v plus their out-degree edges (connecting to v) which are all the possible walks of length 1 ter-

minating in v.
An input tree can be represented visually, as shown in Fig 1, which illustrates the input his-

tory of nodes E and F in the network shown in Fig 2A. Each node in the network has its own

input tree, which may appear different at first. However, if the labels of the nodes and edges

are ignored, a symmetry can be uncovered, revealing that some nodes in the network have the

same input tree structure. These equivalent structures are referred to as isomorphic input trees,
which are bijective mappings from one input tree T to another input tree U , such that there is

a one-to-one mapping of nodes and edges from the ith layer of tree T to the ith layer of tree U
[66]. As a note, N can potentially be infinite if there are loops in the network (walks with node

v at the start and end of it); although the smallest length of walks N to guarantee the complete
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distinguishment of unique and not isomorphic input trees is n−1, where n is the total number

of nodes in a graph G [35].

Nodes with the same input tree are in the same fiber, which are projections of a morphism

called a graph fibration [28]. A graph fibration φ between two graphs G = (NG, EG) and B =

(NB, EB) is satisfied when for any eB 2 EB and any vG 2 NG with φ(n) = h(eB), there is a unique

eG 2 EG such that φ(eG) = eB and h(eG) = vG. A fiber is a set of nodes (cluster cell) with isomor-

phic input trees in G, mapped via φ onto a node in B, where G is the total space and B is the

base. This paper focuses on theminimal graph fibration, collapsing a graph into itsminimal
base, where the base contains one node for each unique input tree, resulting in a trivial parti-

tioning of B and aminimal balanced coloring of G [28]. A partitioning with k cluster cells that

obey equitable partitioning is minimal if no other partitioning with fewer than k clusters satis-

fies the equitable partitioning condition [31]. An example of this can be seen in Fig 3.

Throughout this paper we refer to theminimal graph fibration as theminimal balanced color-
ing of a graph.

Based on theory nodes in the same fiber synchronize, meaning that the associated admissi-

ble ODEs have the same value at the same time [28, 36]. Also based on theory, there are no

restrictions on the differences in behavior between two nodes in two different fibers, and it is

possible for two or more fibers to synchronize [27], such is dictated by the set of equilibrium

solutions of an ODE system. Connected nodes in the same fiber may have phase shifts under

Fig 1. Input trees and their isomorphism. The input trees of nodes E and F for the network in Fig 2A are shown. The input tree of node E is given by

all the possible paths in the network in Fig 2A which terminate on node E. All paths can be overlayed together forming a rooted tree graph which is

referred to as the input tree. In this example only the first three layers of the input trees of nodes E and F are shown, but it can already be seen that their

input trees are identical if all the labels of the nodes and edges are ignored. Nodes with isomorphic input trees eventually synchronize regardless of

synaptic delay or small variations there parameters [67, 68]. Colored lines indicate the morphism between trees. An input tree can be annotated by the

number of edges between specific nodes at specified layers, the edge from B to F is shown for both input trees where it appears at different layers.

https://doi.org/10.1371/journal.pone.0297669.g001
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the same frequency or an integer multiple of a base frequency, but only if the nodes have rota-

tional symmetry, and the phase shift is a rational fraction of 2π [31]. Although the natural

occurring biological variations from neuron to neuron can be expressed as variations in the

same set of parameters among the admissible ODEs and the physical propagation of signals

between neurons can be incorporated through different time retardation terms. All these mod-

ifications do not necessarily destroy the expected synchronization of nodes in the same fiber,

but do indeed reduce the parameter space of the equilibrium solution where such is attainable

[67, 68]. Therefore we forgo integrating these for the sake of simplicity of our models.

We find the fiber partitioning algorithmically by initially coloring all nodes and arrows

with a unique color. After that, the algorithm recolors all nodes with the same number of col-

ored inputs with a new color, including their outgoing arrows. These procedures continue

until no recoloring is possible. This is the algorithm developed by Kamei & Cock [69], which is

a generalization of the algorithms developed by Belykh and Hasler [70] and by Aldis [66] and

implemented through the recreated code in [38].

Automorphism and their orbit partitioning. The second method relies on the set of

automorphisms of a graph, which is a bijective function σ from a graph onto itself preserving

the structure of the graph, specifically its adjacency matrix A. The set of all automorphisms of

graph G along with the operation of composition forms the automorphism group Aut(G) [71].

Specifically, an automorphism is a permutation of the vertices of the graph that preserves the

adjacency relationships between them. If G is a graph with vertices {v1, v2, . . ., vn}2NG and

with edge set EG, then an automorphism of G is a permutation σ of the node set such that if (vi,
vj) is an edge in G so too is (σ(vi), σ(vj)) an edge in G. An automorphism function σ can take

Fig 2. Fiber and orbits. The inner color of a node is a representation of the fiber to which said node belongs to and the color of the ring indicates to

which orbit such a node belongs to. (A) Graph with 4 fibers and 5 orbits. The separation of fiber and orbits among the 4 upper nodes occurs due to the

presence of outgoing edges into nodes E and F. (B) This graph only differs from A by the removal of the edge B!F exemplifying how restrictive orbit

symmetries are. There are only trivial orbits but there still non-trivial fibers. (C) Although it is more common to have a matching of the partitionings

produces by fibers and orbit symmetries in a given undirected networks there can exist situations in which these two are not matching as seen in this

example. In this simple example there is a breakage between the fiber and orbit symmetries due to the in-existence of a permutation action which could

swap nodes X, Y and Z respectively with their fiber symmetric counterparts W, U and V meanwhile preserving its structure and adjacency matrix.

https://doi.org/10.1371/journal.pone.0297669.g002
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the form of a symmetric permutation matrix P where matrix is considered to be an automor-

phism of an adjacency matrix A if the following holds:

PAP� 1 ¼ A; ð5Þ

where P−1 is the inverse of P. Additionally it is invertible meaning that P = P−1 or PP−1 = 1

allowing Eq (5) to be rewritten as:

½P;A� ¼ AP � PA ¼ 0: ð6Þ

The permutations of the automorphism group can be grouped into sets that form normal

subgroups meaning that a permutation from one set can commute, as in Eq (6), with the per-

mutation of another set (disjoint unions) [34]. In other words, applying one of these permuta-

tions to a graph it only permutes a closed set of nodes, leaving the rest of the graph’s nodes

intact.

Fig 3. Graph fibration φ: G! B. The network at the bottom (G) shows an example for a graph where the color of its nodes represents the fiber to

which they belong. Notice that all nodes with the same (e.g. {3, 4, 5}) color are collapsed on to one representative node (y) in the network above called

the base. This collapsing process is known as the lifting property of a graph fibration φ. This property also applies to edges, notice that the edges in the

total space (e.g. {e3!1
G ; e3!4

G }) which are lifted to one representative edge in the base which is situated between nodes of the same color as in the total

space (ey!xB ).

https://doi.org/10.1371/journal.pone.0297669.g003
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If when σ is applied on a graph’s adjacency matrix A as in Eq (7) and it doesn’t change it,

then multiple consecutive applications won’t either.

sðAÞ ¼ PAP� 1 ð7Þ

Although an automorphism’s consecutive application preserves a graph’s adjacency matrix,

it does shuffles node labels. So, a node’s label always returns to its original after visiting other

nodes. Given a graph G and σ, the orbit of node v under σ is the set of all vertices that can be

reached by applying σ repeatedly. That is, the orbit of v is the set nodes

fskðvÞ : k 2 Zg ð8Þ

where Z denotes the integers numbers. The orbit of node v includes all vertices equivalent to v
under the action of σ, transformed by applying σ k times. The set of nodes belonging to an

orbit are said to have the same orbit coloring [32, 72] were studies in dynamical systems show

that network automorphisms lead to the synchronization nodes in an orbit [31, 69, 73, 74].

Orbit partitioning results from analyzing the complete set of automorphisms of a graph Aut
(G). Orbits can be revealed not only by repetitively applying a single automorphism but also by

applying the set of automorphisms Aut(G) consecutively in all possible orders and multiplici-

ties (e.g., P3P1P2P2). This approach allows for a wider range of transformable nodes to be

detected. The procedure of how this is explicitly done is out of the context of this paper, but

the process of uncovering orbit coloring partitions is done using SageMath [75], an open-

source mathematics software that utilizes various Python packages, including Nauty [76].

The orbit partitionings that emerge from this are equitable partitioning which are cluster

cells, stressing that an orbit coloring is always an equitable partition, but the reserve is gener-

ally not true [31, 32]. This is because, by definition, orbit partitioning requires the conservation

of both in-degree, requested for the equitable partition, and out-degree. As such, an equitable

partition may not be an orbit partition since the out-degree condition may not be met.

Fibers vs orbits. As discussed above the equitable partitionings of fibers and orbits are

related to the concept of symmetry. The orbits obtained from automorphisms are analogous to

the fibers obtained from symmetry fibrations. Orbits, however, are a more restrictive form of

graph symmetry as these must satisfy in-degree and out-degree edge constraints. In contrast,

fibers must only satisfy in-degree constraints.

Fibration symmetries in a graph have fewer constraints than automorphisms, resulting in

fewer partitionings in the graph. Orbits are a subset of fibration symmetries, which addition-

ally conserve the out-degree structure of the adjacency matrix. This means that every orbit is

also a fiber, and the in-degree constraint present in the orbit partitioning, which is the main

constraint in fiber partitioning, leads the nodes in the same orbit (cluster cell) to become syn-

chronous [33]. However, note that a fiber is not necessarily an orbit.

In Fig 2A, an example of a graph with three fibers and four orbits is shown. The existence of

more fibration symmetries than automorphisms generally leads to having fewer (or equal)

fibers than orbits. In other words, having more symmetries implies having fewer cluster cells.

The green nodes have the same number of in-degree edges (belonging, therefore, to the same

fiber) but some have different number of out-degree edges. Nodes B and D each have an out-

degree equal to 2. Another way to conserve the structure of this graph other than applying the

identity transformations is by rotating A! B! C! D! A twice in this order, and in con-

currence reflecting horizontally all the nodes below the green nodes. Without applying this

reflection, node B would have one outgoing edge into node E, therefore not preserving the

original graph’s structure. Notice that any permutation for the upper four nodes would still

preserve its fiber symmetry as these would continue to only receive one green in-degree edge.
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As an additional example, the removal of edge B! F as seen in Fig 2B destroys the orbit

symmetry of the graph. No rotation between the upper four nodes would allow node D to have

an outgoing edge to node E other than its original position. There also does not exist any per-

mutation of the lower five nodes that would keep the structure intact all due to the removal of

D! E.

Building blocks

As an example, number theory shows that every natural number can be represented as a

unique product of prime numbers [77]. Prime numbers are considered the fundamental build-

ing blocks of natural numbers. This concept is extended to group theory, where finite groups

can be broken down into simple subgroups [78]. This abstract example has implications for

natural systems due to the relationship between group theory and symmetry. A similar rela-

tionship can be applied to biological networks, as shown in [39, 79–81]. In this paper, besides

partitioning network nodes by fiber (and orbit) symmetries, we also try to categorize all fibers

into distinct and succinct fundamental units. These fundamental units (or otherwise named

building blocks) relying on the (topological) properties of the input tree of a given fiber as pre-

viously discussed in [26]. Despite the diverse range of input tree topologies, they share com-

mon structural characteristics that allow us to categorize these into fiber building blocks

(FBBs).

Circuits. In this paper we show the fiber building blocks of the chemical networks. In

order to do so and explain it in a more detailed manner each of the networks will be broken

into multiple sub-graphs. Where we refer to these sub-graphs as circuits and for a graph with k
fibers there will be k circuits. These circuits are produced by collapsing any of these chemical

network graphs (total space) into their base graph representation and retaining the unique

fibers present in the input tree of a fiber under consideration. Take the Backward Chemical

network (a.k.a. B-Chem) as seen as a graph in Fig 4A as an example. In this graph the color of

the nodes represents the fiber to which they belong (more on this particular network’s parti-

tioning ahead). Neurons DA05, DA08, DA09, VA06 and VA11 are all the nodes contained in

what we can call fiber Blue5 standing for the 5 blue nodes composing it. The input tree of fiber

Blue5 contains nodes belonging to, using the previous nomenclature, fibers Orange4, Pink2,

Cyan2, Mustard2 and Gray4. The circuit associated with fiber Blue5, call this the main fiber or

the fiber under consideration, can be observed at the left of Fig 5. It is produced by collapsing

the B-Chem network and retaining the fibers with their outgoing edges that compose the

input tree of fiber B5, call these other fibers the induce fibers.

Fiber building block synthesis. A circuit is further broken down into its fundamental

building block which here and as in [26] we refer to as fiber building blocks. A circuit has as

many FBBs as is has induce fibers plus its main fiber, 6 FBBs for the B-Chem as it is seen in Fig

5. As mentioned for each fiber in a graph there exists a fiber building block (FBB) associated

with it which is a sub-graph S� G induced by the following nodes [26]:

• all the nodes in the fiber (nodes with the same minimal balanced coloring),

• immediate in-degree neighboring nodes of all the nodes in the fiber,

• nodes belonging to the shortest loop that include a node in the fiber which are not a self-

loop,

• if all points above lead to two or more disconnected graphs, the nodes composing the short-

est path connecting each pair of disconnected graphs are included. These types of FBBs are

dubbed composite fiber building blocks which are further explained below.
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For all nodes that are considered in the second point above we refer to these as regulator
nodes. If the nodes in the main fiber are found to send information back into the fiber then

these too are considered as regulatory nodes.

Fiber numbers. The FBBs that make up a circuit, are graphs in their own right and by

such can also be represented by an input tree. These input trees are the bases of finding the

building blocks of biological networks such as in the chemical synapses connectome of the C.
elegans. Our approach is to categorize these FBBs through their structures and through such

capture the fibrational composition of these networks. Below we explain how these can be

decomposed into two features that numerically quantify the structure of the FBB’s input tree.

We first introduce and explain the feature followed by an example using the FBB of the cyan

node found in Fig 5 (top sub-graph of Layer 2).

A feature of FBB that can be use to classify them is related to the number of nodes that are

present at every layer of the FBB’s input tree. Specifically how the number of nodes grow or

remain the same relative to consecutive layers. This structure for a given input tree T ðvÞ can

be represented by a numerical sequence ai that denotes the number of nodes for every layer i.
This sequence also corresponds to the number of walks terminating on the single node v at the

very top of the input tree, a.k.a. the root of the input tree. The exact number of nodes at every

layer does not matter as much as how the number of nodes change per consecutive layer. This

can be captured by the branching ratio, or common ratio, which can be found by taking the

Fig 4. Backward chemical synapses network partitioning results. The partitioning of nodes into different synchronous groups is depicted by the color

of the nodes. (A) The minimal balanced coloring results show 10 distinct colors/partitions for the 30 neurons involved. (B) The orbit coloring results for

this network where the 30 neurons have been partitioned into 13 distinct partitions. The colored shaded areas show the normal subgroups that form the

automorphism group of this graph (AutðGÞ) with their respective symmetry group represented by the same colored symbol. (C) An example of neurons

with different minimal balanced coloring and orbit coloring. The latter has a permutation symmetry S2 swapping VA02 with VA03 and VA05 with

VA04 simultaneous which preserves the structure of this network.

https://doi.org/10.1371/journal.pone.0297669.g004
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limit of ai+1/ai as i!1. This ratio is denoted by |ni which captures the number of loops in

the input tree of a fiber. The symbol |ni is called a fiber number and can be an integer or an

irrational number, with the latter indicating complex branching due to nested loops which are

referred to as “Fibonacci fibers”.

Using our example, the first layer has only one node as is the case for any input tree, in this

case the cyan node. The second layer is composed by 3 nodes (as the cyan node has 3 in-degree

edges). We obtain the number of nodes in the third layer by calculating the total number of in-

degree edges for all the nodes present in layer 2. For this case one of the nodes in layer 2

receives 3 in-degree edges, while the remaining two nodes (repeats) receive 4 in-degree edges

making for a total of 11 nodes. Using the third and second layer we obtain a branching ratio of

a3=a2 ¼ 11=3 ¼ 3:�6, calculating this branching ratio for layers evermore faraway from this

input trees’ root it reaches a limit value of 3.372. . ..

Another property that is used to characterize a FBB’s input tree T ðvÞ for a node v is the

number of unique trails with no repeating edges which terminate on node v. Where a trail is a

walk in which all directed edges are distinct (transversed once). The number of trails is calcu-

lated in the base graph induced by the nodes that compose the input tree disregarding edge

multiplicity between nodes. This property is symbolized by |ℓi which is another fiber number

and together with |ni are enough to categorize the topology of input trees where the two can

be agglomerated into |n, ℓi which are called fiber numbers.

Fig 5. Fiber building block decomposition. Present here at the most left is the base of the circuit induced by the input tree for the fiber containing

neurons DA05, DA08, DA09, VA09, and VA11 (blue node) present in the backward chemical network as seen in Fig 4A with the same color scheme.

The first input into this fiber are provided from the orange (VA12) and cyan (AVD) nodes where these form the first layer of the multilayered block.

The input tree of the network formed by these nodes give a fiber number of |0, 2i (ℓ = 2 as multiplicity of edges are ignored). The next layer is composed

by the elementary fiber building blocks of the input fibers in the previous layer. This notion is carried out at every layer until all fibers have been shown

only once. Layer 2 already shows a complex elementary FBB for the cyan node with fiber numbers |3.372, 6i. Layer 3 too contains elementary FBB with

a similar fiber number as the cyan node in layer 2; the only difference here is that these two contain different number of inputs therefore the ℓ number is

different in these two. Additionally in layer 3, self-loops of the gray node are present for the upper elementary FBB as the nodes forming this fiber are

composed by neurons AIB and RIM which form a square network and which all send signals to the pink fiber. As for the gray fiber in the elementary

FBB at the bottom it is only formed by neurons AIB which have no connections between them and therefore their collapse does not produce self-loops.

The fiber building block induced by the input tree of the blue fiber concludes with a 4th layer which contains 4 neurons connect in a square. These have

no external input which leads to it having fibers numbers |2, 0i which captures the duplication of nodes at each layer in their input tree.

https://doi.org/10.1371/journal.pone.0297669.g005
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Using the cyan FBB in Fig 5 we explain how to calculate the numerical fiber number |ℓi.
Before anything lets call the node above and to the left of cyan node theM node (for the color

mustard), and the node above and to the right the P node (for the color pink). All the unique

trails terminating in the C node are: {M! C; P! C;M! P! C; P!M! C; P!M! P
! C;M! P!M! C}. The previous fiber number |ni is ultimately another quantification

of the trails present in a FBB’s input tree, particularly of closed trails that result in loops, where

loops of different length can be “nested” in each other resulting in Fibonacci fibers. Using our

cyan fiber building block it can be seen that it has loops of length 2, 3, and 4 of which each is

nested in the other. Where an example of a loop of size two is P!M! P, a loop of size 3 can

be the closed walk C!M! P! C and an example of a loop of size 4 is C!M! P!M!
C.

Multilayering. Simpler fiber building blocks can be combined to create multilayered

composite blocks needed when the topology of a circuit or FBB cannot be fully captured by

one fiber number pair |n, ℓi. In such cases, the |n, ℓi of the input tree of each regulator of an

FBB is added to the |n, ℓi of the input tree of the main FBB itself, creating an addition between

two adjacent layers. This addition is performed in a left-to-right ordered sequential manner,

resulting in the following notation:

jn1; ‘1i � jn2; ‘2i þ jn3; ‘3i � :::: ð9Þ

The symbol� represents an addition of FBBs between adjacent layers and the symbol + is

used to indicate that the two FBBs next to this symbol are in the same layer. In the example

above the fiber number |n1, ℓ1i represents the FBB at the first layer. Fig 5 is an example of mul-

tilayered FBB composed of regular and Fibonacci fiber building blocks. Overall these types of

combination of fiber building blocks aid in determining the order of complexity among fibers.

Admissible ordinary differential equations

We compare results of fiber and orbits with cluster synchronization obtained from simulating

interacting neurons. Interactive nodes are simulated by mapping admissible in-degree depen-

dent coupled ordinary differential equations (ODE) of the form in Eq (10) to each node in our

networks [28, 30, 31, 36, 74]. The i-th neuron’s input is the i-th column of an adjacency matrix

~A, where the j-th row in the column represents the strength of the input from neuron j to neu-

ron i, and this strength is the weight of the edge from neuron j into neuron i.

dVi

dt
� _Vi ¼ fðViÞ þ ~s

Xn

j¼1

~Aji gðVi;VjÞ þ s
extIexti ; i ¼ 1; :::n ð10Þ

Each i-th neuron of a network has a voltage Vi associated with it, representing the mem-

brane potential of the i-th neuron. The rate of change of this voltage Vi is given by an ODE of

the type in Eq (10). As the equation shows, Vi is affected by the voltage of other neurons cou-

pled with it with a strength associated with the sum on the right side of Eq (10).

To emulate the activation of neurons involved in the forward or backward locomotion of C.
elegans, our models provide external stimuli through the term Iexti to only some neurons in

each network. This action is called driving or stimulating the network. The left and right ver-

sions of an inter-neuron pair, which govern the activation of the downstream motor-neurons

DA, DB, VA, and VB responsible for activating wall muscles that produce locomotion, are

mainly selected to receive the external stimuli through Iexti [52]. All nodes without external

input stimuli have their Iexti set to zero. The time constants represented by the symbol σ control

the rate of change of the ODE components. Neurons that are considered to be synchronous
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through their graph analysis (like inter-neuron pairs) must receive the same input or else these

will not attain synchronicity.

The smooth internal state function fð�Þ : R! R and pairwise interaction function gð�; �Þ :

R� R! R can be either linear or nonlinear, and are present for both types of interactions in

the C. elegans: chemical synapses and gap junction interactions. The gap junction interaction

function is linear, while the chemical synapse interaction function is nonlinear. The internal

state function f(�) brings a neuron back to its resting state voltage Vrest. For the chemical syn-

apse interactions, two types of functions are explored: the Chem type I model based on [82,

83], and the Chem type II model taken from [84–86]. These lead to three types of ODE interac-

tions applied to their corresponding networks:

_Vi ¼ fðViÞ � a
gap
Xn

j¼1

~Agap
ji ðVi � VjÞ þ a

extIexti Gap junction ð11Þ

_Vi ¼ fðViÞ � a
chem
Xn

j¼1

~Achem
ji FðVjÞ ðVi � Vs;jÞ þ a

extIexti Chem type I ð12Þ

_Vi ¼ fðViÞ � a
chem
Xn

j¼1

~Achem
ji sj ðVi � Vs;jÞ þ a

extIexti Chem type II ð13Þ

with support functions:

fðViÞ ¼ � a
leakðVi � VrestÞ ð14Þ

dsi
dt
� _si ¼ arFðViÞ ð1 � siÞ � ad si ð15Þ

FðViÞ ¼
1

1þ expð� gðVi � V threshold
i ÞÞ

ð16Þ

Iexti ¼ Idrive þ Iosc sin2pft þ Inoise ð17Þ

The term Iext in Eq (17) consists of three parts: Idrive is a positive constant current; Iosc is an

oscillatory term and a Gaussian random walk term Inoise (with standard deviation of 1 scaled

between 0.1pA to −0.1pA). The oscillatory stimuli frequency of the driven neurons was selected

between 1Hz to 3Hz to approximate the swimming frequency of an adult wild-type C. elegans
in agar [87]. The external stimuli function Iext was enforced to be the same for neurons with

the same balanced coloring as to preserve their input symmetry.

A consensus agreed upon depiction of dynamics of neurons would have independent noise

for each neuron. If this case were applied, neurons belonging to the same fiber will indeed no

longer have an exact synchronization Vi(t) = Vj(t). Depending if the strength (amplitude) of

the noise term is kept small relative to the constant driving stimuli or the epsilon term in the

LoS measure (measure introduced in the following section), the latter will give a result close to

1 indicating near synchronicity. As it will be seen, in our models inter-neuron pairs are the

ones to receive external stimuli and therefore drive the network. If each inter-neuron receives

independent noise, the synchronicity of all other neurons will not be affected by this imple-

mentation. This is due to the fact that all of the networks are left-right symmetric giving way to

neurons in each fiber receiving both signals provenient from the driven inter-neuron pair. By
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such there are no neurons that only receive a signal from only one of the driven inter-neurons

which would lead to a breaking of the expected fiber partitionings.

Reiterating the models used here do not have time delays to represent the finite time of sig-

nal propagation between neurons, it has been shown that neuron ODE models can still syn-

chronize when this effect is taken into consideration [67]. Additionally the parameters used

and explained below need not be exactly the same between neurons for synchronization to

occur, although it can reduce the system’s capacity to achieve synchronization [68].

Ordinary differential equation parameters and implementation methods. The parame-

ters of these ODEs shown above are taken from Kunert et al. [85]. The parameter αleak is a time

constant with a value of 10s−1 and is associated with the rate of decay of the neuron’s membrane

potential. This is derived from the leakage conductance per surface area gL times the average

surface area of an inter-neuron S (based on Varshney [8]gL � S is equal to 0.01nS) divided by the

membrane capacitance of a neuron (Varsheny et al. [8] defines C to be 1pF). The time constants

for chemical synapses and gap junctions have the same value of gL � S/C = 0.1nS/1pF = 100s−1

where these fall within the value range from Koch’s book on biophysics [88].

The constant γ is associated with the steepness of the sigmoid function which is set to 2ln(0.1/

0.9)/36mV in accordance to Wicks et. al [53], which defines this constant to be representative of

a change of the value of the sigmoid function between 0.1 to 0.9 within a range of 36mV. This

value is close to that reported by Kunert [85] so it is rounded to 125V−1 to match Kunert’s value.

The synaptic activity variable depicts the activity magnitude at a synaptic junction, and its

behavior is affected by the neuron’s membrane potential as well as the parameters determining

the increase and decrease of synaptic activity. The terms ar = 1s−1 and ad = 5s−1 associated with

the Chem type II model correspond to the synaptic variability’s rise and decay times [85]. The

equilibrium value for the synaptic variability term comes from setting Eq (15) to zero and hav-

ing the sigmoid equal to 0.5; this leads to a value of seq = ar/(ar + 2*ad) = 0.09. Finally αext is

simply set to 1/C and Vs,j takes two values: 0mV for excitatory vs −70mV for inhibitory presyn-

aptic neurons [89]. For this study, we considered all chemical synapse connections to be excit-

atory (although our code accepts networks with inhibitory connections). The units of Iext are

pA to match the units (V/s). All neurons in the simulation conducted in this paper have the

same parameters as the different families of motor-neurons are known to be the most similar

among all the differently distinct electrophysiological group of neurons [49]. We extend this

notion to the parameters of the inter-neurons to have a simpler system to work with, as well

due to the nature of our sub-networks being mainly composed by motor-neurons.

We set the threshold voltage Vthreshold for each neuron to the corresponding solution

obtained by setting Eqs (12), (13) and (15) to zero and Eq (16) to 0.5; where the solution is the

stable point solution for this ODE model. This procedure (Gaussian elimination) is similar to

that in Wick et al. [53] where in such Iexti is set to 0 where as we set it to Idrive (the mean value

of an undulatory or of a noise stimuli is 0, therefore, these are not included). This recipe finds

the solution of the threshold voltage to be the one below

V threshold ¼ A� 1b ð18Þ

such that A is given by

Aii ¼ 1þ
1

sleak

Xn

j¼1

ðsgap ~Agap
ji þ cschem ~Achem

ji Þ

Aji ¼ �
1

sleak

Xn

j¼1

sgap ~Agap
ji

ð19Þ
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and b by

bi ¼ Vrest þ
1

sleak
ð
Xn

j¼1

cschem ~Achem
ji Vs;j þ s

extIexti Þ: ð20Þ

where the term c is equal to seq for the Chem type II model or 0.5 for the Chem type I model. It

is important to point out that threshold voltage is respectful of the in-degree nature of Eq (10).

Further in the paper Vthreshold is used in conjunction with the Jacobian to determine the stabil-

ity of the solutions.

The ODE dynamics were evolved and computed using the Runge-Kutta-4th method with a

time step dt of 0.1 milliseconds. Noise dynamics were implemented through a modified sto-

chastic Runge-Kutta method as proposed in [90], where the update time step for the noise is

dt1/2. A link to a user-friendly Matlab app developed in-house can be found in the Data Avail-

ability section. This app can reproduce any of the dynamics presented in this paper with the

appropriate inputs. It can measure the level of synchronization (explained in the next section)

and has additional tools for further experimentation.

Synchronicity measure

Synchronicity can be quantified in several ways, including Pearson correlation, covariance,

and cross-correlation. However, we propose a stricter metric based on the potential of two

neurons i and j being fully synchronous if they have the same value within a certain time win-

dow as defined in Eq (21).

ViðtÞ ¼ VjðtÞ : 8t ð21Þ

To measure near-full synchronicity and distinguish between distinct potentials, we intro-

duce the Level of Synchronicity (LoS), which utilizes a time-averaged Gaussian kernel distance

[91]. The LoS metric enables us to differentiate between situations of nearly equal potentials

and those with no synchronicity at all.

LoSij ¼
1

T

XT

t¼time step

exp �
½ViðtÞ � VjðtÞ�

2

2s2

( )

: ð22Þ

In the equation above, T is the total amount of time steps on which LoS is applied between

the signals of neurons i and j. The range of the LoS function is [0, 1] where a value of 1 indi-

cates full synchronicity, whereas a value of 0 would indicate no synchronization. The paramet-

ric term σ serves as a scale to define a benchmark for closeness between two points.

To apply the LoSmetric to our simulations, we allow each network to reach a stable state

after the initial transients by running it for a sufficient amount of time. Attaining such is

guaranteed due to the equilibrium solutions of our ODEs being attractors as will be seen later

in the paper. (Note: we use the term stable state equivalently to that of an equilibrium solution

of an ODE system throughout this paper). We use the last second of simulation time to deter-

mine the synchronicity level, analyzing all pairs (i, j) and producing an LoSmatrix for each

network simulation. We use a value of σ = 0.1mV for all simulations, such that a potential dif-

ference of 0.1mV between two neurons over a time window T would yield an LoS value of

approximately 0.61. We chose σ by starting at 10mV, which produced a fully synchronous LoS
matrix for all networks and ODE models with no external stimuli. We then reduced σ until the

average of all LoS pairs between two fibers in the network with the most fibers was below

0.001.
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Besides the LoSmeasure, we used the Phase Locking Value (PLV) [92] measure at our last

set of simulations to measure the amount of phase synchronicity. PLV quantifies the degree of

synchronization or coupling between two undulatory signals. It is based on the idea of the dif-

ference between the instantaneous phase of two signals at each time point, and then computing

the average over a certain time window. These values fall between 0 and 1, where 1 indicates

two signals are in constant phase synchronicity (the two signals hold the same phase difference

through a recording). A value of 0 indicates that the two signals have varying phases such that

the difference between these is random and does not remain constant.

Results

Network partitions in the locomotion connectome

We focus on the forward gap junction (F-Gap), backward gap junction (B-Gap), forward

chemical synapses (F-Chem), and backward chemical synapses (B-Chem) taken from [37]

where each one of these are binary edges networks. In addition we also work with the integer

edge weighted version of the aforementioned networks that respect the symmetrization done

in [37] and their fiber partitionings. For the latter the weight of an edge between two fibers was

taken to be the rounded-up integer of the average of all the edges present in the original con-

nectome of [8] between the cluster cell of the fibers under consideration.

The resulting partitionings and their cluster cells are the same for both binary and integer

weighted networks since the graph structure G is the same regardless of edge type. However,

the input tree for a fiber associated with a specific neuron is likely different between binary

and weighted versions.

Additionally the adjacency matrix for each of the integer edge weighted networks is pre-

served under the permutation actions of the normal subgroups of the AutðGÞ of the respective

binary network [37]. Notice that, in principle, automorphisms of weighted networks are differ-

ent from automorphisms of binary networks: one weighted edge can easily break the symme-

try of a binary network. As such, in a weighted network, the permutation needs to conserve

adjacency taking into considering their weights. Due to the way the integer edge-weighted net-

work has been constructed the orbits of the binary and integer edge-weighted networks are the

same, meaning that the repetitive application of the same permutation on both the binary and

integer versions of a network will result in a group of neurons visiting the same nodes of the

network.

Figs 4, 6 and 7 show the results of the partitioning for the four different graphs under analy-

sis. Fiber and orbit partitionings are the same for the forward and backward cases of the undi-

rected gap junction networks (Figs 6B and 7 respectively). This is a direct consequence of the

bidirectionality nature of undirected graphs where two nodes with the same fiber symmetry

also preserve out-degree edges. Indeed, in an undirected graph, the in-degree (conditions for

fibers and orbits) and the out-degree (condition for orbits) of a node has the same value. That

is, every undirected link can be seen as an in and out-directed link, therefore, preserving the

in-degree connectivity generally implies also preserving the out-degree, and therefore, the

fibers can be expected to be the same as the orbits.

We emphasize that this is not always true. We can think of many cases of undirected net-

works where fibers are not the same as orbits, see Fig 2C. In this simple example, there is a

breakage between the fiber and orbit symmetries due to the in-existence of a permutation

action that could swap nodes X, Y, and Z, respectively, with their fiber symmetric counterparts

W, U and V meanwhile preserving their structure and adjacency matrix. However, it is inter-

esting that we find that in the gap junctions, the orbit partitionings equal the fiber partition-

ings, and fibrations symmetries do not add any more to what we can find with the
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automorphisms of these networks. Thus the structure of the gap is enough to be characterized

by automorphisms [37] completely characterize these networks. In [37], we stop the analysis at

the level of automorphisms, whereas here, we also find the associated orbits and their fiber

building blocks.

The situation is different when the graph is directed, and as such, the in-degree of a node

may differ from its out-degree. In these circumstances, the less stringent constraints of Fibra-

tions result in a higher number of symmetries and, therefore, a smaller number of fibers. Obit

and Fiber partitionings can also be the same in (directed) networks. These are equivalent when

the automorphism group of the graph acts transitively on the set of fibers. Meaning that all the

nodes of a fiber (for all fibers) should be able to be permuted with one another under the

action of a permutation symmetry in the automorphism group of the graph [93].

In the F-Gap network (Fig 7), nodes VB03 and VB07 are an example where they have bidi-

rectional connections with both AVBL and AVBR inter-neurons and DB01 and VB02 motor-

neurons. They belong to the same fiber and orbit. If VB07 did not have out-going connections

to the inter-neurons (AVBL and AVBR), and if VB03 did not have out-going connections to

the motor-neurons (DB01 and VB02), then the fiber partitioning would remain the same.

However, the orbit coloring would partition neurons VB03 and VB07 into their own unique

colors since no permutation between these two nodes would preserve the connectivity matrix

of the network. The minimal balanced coloring and orbit coloring are also the same for the

F-Chem network, as the minimal balanced coloring for this particular network is modular and

out-degree conserving in each of its partitions.

In contrast to other networks, B-Chem (Fig 4) exhibits differences between minimal fiber

and orbit coloring. Consider the example of neurons VA02, VA03, VA04, and VA05 shown in

Fig 4C, where each node receives the same number of inputs from inter-neuron pairs AVE,

Fig 6. Partitioning results for the forward chemical and backward gap networks. Results for the minimal balanced coloring and the orbit coloring

are same for these 2 networks. The colored shaded areas show the normal subgroups that form the automorphism group of these graphs (AutðGÞ) with

their respective symmetry groups represented by the same colored symbol. (A) The F-Chem network has its 22 neurons partitioned into 4 distinct

colors. (B) The B-Gap network with its 29 neurons partitioned into 6 distinct synchronous groups.

https://doi.org/10.1371/journal.pone.0297669.g006
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AVD, and AVA. Any permutation among these nodes preserves the number of colored inputs

they receive, resulting in the same fiber (minimal balanced coloring). However, node VA04

has no outputs, so permuting VA03 with VA04 would change the adjacency matrix of the sub-

graph. The only way to preserve the out-degree of these four nodes under permutation is to

simultaneously permute VA02 with VA03 and VA05 with VA04 ({{VA02, VA03}, {VA04,

VA05}}), which is an instance of an orbit coloring.

Another example of differences between the minimal fiber partitioning and orbit coloring

partitioning can be observed for VA12 and between L-R inter-neurons RIM and AIB. Besides

the latter example, in all four networks, left-right inter-neurons pairs belong to their own

unique partitioning.

Fiber building blocks

The FBBs of the F-Chem are categorized by integer n and low ℓ values, and are driven solely by

neurons PVCL and PVCR. The first row of Fig 8 shows the only multilayered composite build-

ing block with fiber numbers |1, 1i � |1, 2i, which represents VB07, VB09 and VB06, VB08,

respectively.

The backward chemical network is composed of Fibonacci FBBs, formed by third layer

inter-neurons AVA, AVD, and AVE, which receive information from first and second layered

Fig 7. Partitioning results for the forward gap network. Results for the minimal balanced coloring and the orbit coloring are same for this network.

The colored shaded areas show the normal subgroups that form the automorphism group of these graphs (AutðGÞ) with their respective symmetry

groups represented by the same colored symbol. (A) The F-Gap network with its 20 neurons partitioned into 6 distinct equitable partitions with one

partition containing only one neuron. (B) Sub-graph used as a visual aid for the example found in the Network partitions in the locomotion

connectome section.

https://doi.org/10.1371/journal.pone.0297669.g007
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Fig 8. Forward chemical fiber building blocks. Left column illustrates all the building blocks that form the binary

F-Chem network. These sub networks arise as a consequence of its neurons belonging to a unique strongly connected

component and all neurons with outgoing edges to it. The column named Fiber Base shows the collapsed version of

the building block where numbers indicated the number of arrows between two nodes. The input tree here is a visual

capturing of all the paths in the network in which the final node is part of the fiber under focus. The right most column

features the “fiber numbers” |n, ℓi associated with each particular fiber. n indicates the number of unique infinite paths

and ℓ captures the number of “regulators” which are the neurons that only have out-going edges which form part of the

input tree.

https://doi.org/10.1371/journal.pone.0297669.g008
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inter-neurons AIB and RIM [94] to form a loop circuit, as depicted in Fig 9. The branching

ratio of Fibonacci FBBs in the backward chemical network is 3.3723. . ., which was not

observed in a previous study of the E. coli’s genetic network under this analysis [26]. This sug-

gests a higher complexity in the neuronal circuitry of C. elegans compared to the genetic net-

work of E. coli. Regardless, a FBB with an irrational number for |ni indicates that the block is

composed of nested loops. In the case of Fibonacci building blocks, these have nested loops of

length 2, 3, 4, and up to 5, as shown in Fig 5 at layers 2 and 3 where these form the elementary

FBBs of the circuit for neurons DA05, DA08, DA09, VA06, and VA11 (same fiber).

The nested loop FBBs composed of AVA, AVD, and AVE can be compressed into smaller

and simpler representational graphs using the Fibonacci base. For instance, the FBB associated

with |3.372, 6i at the second layer of the network found in Fig 5 can be lifted through a graph

fibration to the graph at the 8th row from the top of Fig 10. In this case, neurons AVD (cyan)

and AVE (bronze) are collapsed onto one node that produces a self-loop as seen in the Fibo-

nacci base, where the common ratio of the sequence an produces a branching ratio of 3.372 for

all nodes composing this network. Any FBB with a Fibonacci branching ratio can be com-

pressed into a simpler graph, and therefore have a simpler sequence associated with it.

Network simulations

In this section, we perform 3 types of numerical simulations according to the specified ODEs

in the Admissible ordinary differential equations section and compare their outcomes to those

predicted by orbits and fibers partitionings. Throughout these simulations we aim to showcase

how the networks behave under different stimuli conditions and how different fibers synchro-

nize with each other depending on this by contrasting the outcomes of simulation test 1 and 2.

Within test 2 we seek to also determine the ranges in which the partitioning predictions are

valid as external stimuli, if large enough, can induce instabilities. After such we explain how

we stimulate these networks while remaining within the regime to not induce these instabili-

ties. Simulation test 3 has the intention to inspect what happens to the expected fiber synchro-

nization if the structure of the network (with external stimuli) remains the same but its edges

take on evermore random values, we find that some version of synchronicity can still be

captured.

Simulation test 1 setup. We set the initial voltages to be normally distributed around the

resting state potential of −37mV and without external stimuli, which can be representative of a

C. elegans during a state named lethargus. During this state, neurons such as ALM have shown

low spontaneous activity and remain near their resting state [95]. The initial voltages are nor-

mally distributed around the resting state, with the standard deviation varied from 0 to 0.1.

We applied this procedure to both types of chemical synapse models. We do not show results

for the gap junction networks without external stimuli as they become globally synchronous,

with nodes having a voltage equal to the resting state, due to nodes being able to be reached by

any other node in the graph. For the Chem type II model, the standard deviation of the synap-

tic variable varied from 0 to 0.1 with a mean of seq for every distribution of initial voltages. This

setting allowed us to study the effects of the initial synaptic variables on the outcomes of syn-

chronicity and inspect its stability.

Simulation test 2 setup. For the second simulation test, we look into the synchronizations

that arise in the networks under external stimuli as modeled by the ODEs found in the Admis-

sible ordinary differential equations section. Contrary to the previous case, this setting allows

us to explore if these symmetrical neural models of the C. elegans with gap junction connec-

tions synchronize to the predicted partitionings found via fiber partitionings, and if the

B-Chem network dynamics separate into orbit or fiber partitionings when in an active state.
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Fig 9. Backward chemical fiber building blocks. Left column illustrates all the building blocks that form the binary

B-Chem network. These sub networks arise as a consequence of its neurons belonging to a unique strongly connected

component plus all neurons which have out-going edges to such neurons in the strongly connected component.

Starting from the third row many of the networks nodes are contained in a box where some of these have out-going

edges indicated by the edges outside of the box. The column named Fiber Base shows the collapsed version of the

building block where numbers indicated the number of arrows between two nodes (not fully captured in the first

column). The input tree here is a visual capturing of all the paths in the network in which the final node is part of the

fiber under focus. The last 3 input trees are omitted as these are too big to be figured here. The right most column

features the “fiber numbers” |n, ℓi associated with each particular fiber. n indicates the number of unique infinite paths

and ℓ captures the number of “regulators” which are the neurons that only have out-going edges which form part of the

input tree. Many of the fibers in this network are composite meaning that they are built from the “stacking” of multiple

fibers.

https://doi.org/10.1371/journal.pone.0297669.g009
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Fig 10. Fibonacci bases. The graphs presented here are the smallest possible, consisting of only two nodes, capable of

producing an irrational common ratios. Additionally each of the examples above have a Fibonacci recursive sequence

formula associated with them; reason for calling them Fibonacci bases. If any of the two nodes in these networks receive

additional input from external nodes the recursive formula along with its branching ratio are not affected, although their

sequences will differ. Due to this larger networks can be collapsed into one of these and still retain the same common

ratio. As an example the elementary building block of the cyan node in Fig 5 has the same branching ratio of 3.372. . . as

the Fibonacci base on the 8th row. This elementary building block can be collapsed via a graph fibration into the

Fibonacci base previously mentioned; ultimately yielding that the two networks are composed of the same fibers with

isomorphic input trees having the same branching ratios. The building blocks in the 3rd layer of Fig 5 have additional

inputs emanating from external nodes which prohibits these to be transformed into the Fibonacci base previously

mentioned via a graph fibration. Surprisingly these have the same branching ratio, the external inputs only change the

initial numbers in the sequence these produce.

https://doi.org/10.1371/journal.pone.0297669.g010
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Before all this, a stability analysis is conducted to determine the range at which the external sti-

muli do not induce any instabilities in these networks + ODE models.

Simulation test 3 setup. We studied four networks and their binary/integer edge-

weighted versions. ~Aji entries in Eq (10) were altered by subtracting a normally distributed

value with increasing standard deviation and zero mean. Initial values were set to equilibrium/

resting state to assess partitioning method reliability when edge weights are distorted. During

our analyses, we kept the σ of the LoS function equal to 0.1mV.

Simulation results

Simulation test 1 results. Applying the LoSmeasurement to the last second of simulation

time for each case produces blocks of synchronicity as seen in Figs 11 and 12. For all the 4

cases pertaining to the backward chemical network, all of the expected fiber partitionings are

present (diagonal boxes delineated by red). We find that for the binary version of the backward

chemical network, neurons within the same fiber became synchronous with nodes on other

fibers, as an example, the 1st and 6th of these diagonal blocks starting from the top in Fig 11.

We confirmed that these synchronizations are still present for longer simulation times or with

a more restrictive σ parameter. These were only confirmed to be significantly diminished

when the networks were driven through an external sinusoidal or Gaussian random walk stim-

ulus, as shown in the simulation test 2.

Results for the forward chemical model were similar and can be seen in Fig 13. The forward

chemical networks synchronize to the predictions made by the fiber and orbit coloring. In the

binary Chem type II case inter-neurons PVC and motor-neurons VB07 and VB09 synchronize

as tested by more sensitive simulations.

Fig 11. Backward chemical model type I simulations with no external stimuli. Initial voltages set to −35mV. (A) Left side pertains to the binary

version of this symmetric network where an example of two synchronous fibers can be observed (AVDL+AVDR with AVEL+AVER) besides another

example with 3 synchronous fibers. An equitable partitioning alone can not predict which fibers become synchronous with one another. (B) the right is

the weighted version of this system which shows a perfect separation of the values of the nodes into the expected those from fiber partitioning. The

block system shows the result of the LoSmeasurement done on the last second of the simulations. The red-lined boxes are visual indicators for the

expected cluster synchronization of neurons predicted by the fiberation partitioning method.

https://doi.org/10.1371/journal.pone.0297669.g011
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Fig 12. Backward chemical model type II simulations with no external stimuli. Synaptic variables initially set to seq and initial voltages set to −35mV.

(A) Left side pertains to the binary version of this symmetric network. (B) is the weighted version of this system which shows a perfect separation of the

values of the nodes into the expected those from fiber partitioning. The block system shows the result of the LoSmeasurement done on the last second

of the simulations. The red-lined boxes are visual indicators for the expected cluster synchronization of neurons predicted by the fiberation partitioning

method.

https://doi.org/10.1371/journal.pone.0297669.g012

Fig 13. Forward chemical type II model simulations with no external stimuli. Synaptic variables initially centered around seq with a standard

deviation of 0.1 and initial voltages set to a mean of −35mV with a 10mV standard deviation. (A) The left portion pertains to the network with binary

edges. (B) The right portion is associated to the integer weight case. The block system shows the result of the LoSmeasurement done on the last second

of the simulations. The right LoSmatrix is an example of an ideal case. The red-lined boxes are visual indicators for the cluster synchronization of

neurons under their expected balanced coloring partitioning.

https://doi.org/10.1371/journal.pone.0297669.g013
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In Fig 14 it can be observed how these neurons belonging to different fibers become syn-

chronous. Curiously one can notice that PVC neuron synchronize with each other and so do

neuron VB07 and VB09 with each other before these two fibers synchronize.

Simulation test 2 results. In this section, we aim to investigate the predictive power of

fiber and orbit partitionings by simulating neural activity. To achieve this, we drive the four

networks by delivering the same stimulus through left-right inter-neuron pairs. These left-

right inter-neuron pairs belong to the same partition in all four networks, therefore not break-

ing the fiber partitioning.

The external stimuli in any of these networks ultimately changes the equilibrium solution

of its respective ODE due the nature of these equations. The sinusoidal and noise stimuli will

lead the voltages of the neurons away and towards equilibrium periodically and aperiodically

Fig 14. Binary forward chemical type II model simulations with no external stimuli. Synaptic variables initially

centered around seq with a standard deviation of 0.1 and initial voltages set to a mean of −35mV with a 10mV standard

deviation. Lines are color coded based on their fiber partitioning where it can be seen that all same colored neurons

eventually synchronize with each other. Neurons PVC belonging to one fiber become synchronous before

synchronizing with neurons VA08 and VA09 belonging to another fiber. The LoS associated with this simulation can

be observed in Fig 13A where the latter example is captured by the only off diagonal blocks.

https://doi.org/10.1371/journal.pone.0297669.g014
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respectively. By such these two stimuli can be regarded as perturbations if kept relatively small

compared to the constant term stimuli of Eq (17) which dictates the equilibrium point solu-

tions. Additionally, it is important to ensure that the external stimuli do not induce any insta-

bilities that could complicate the interpretation of results such as bifurcations or chaos which a

fiber analysis of a graph will not be able to predict. Therefore, we conduct a stability analysis of

the ODEs to determine the range within which the external stimuli does not cause any instabil-

ities. As a common practice in the study of dynamical systems, we focus on the Jacobian of the

model under study. For the Gap junction it’s Jacobian can be written as:

JGap ¼ � aleakI � agapL ð23Þ

where I is the identity matrix and L is the Laplacian of the gap junction adjacency matrix.

Notice that Eq (23) is independent of any external stimuli. The Jacobian matrix is a useful tool

for investigating the stability of a system’s equilibrium point. By analyzing the eigenvalues of

the Jacobian matrix, we can gain insight into the local behavior of the system near it’s equilib-

rium point. According to the established principles of linear stability analysis, if all eigenvalues

are real and negative, then the system is stable, meaning that any small perturbations around

the equilibrium point will dampen over time, and the system will return to its stable state. If

one or more eigenvalues have positive real parts, then the system is unstable, and any small

perturbations will cause the system to diverge from the equilibrium point [96, 97].

We find that all eigenvalues of Eq (23) are negative for the values of αleak and αgap as

described in the Ordinary differential equation parameters and implementation methods sec-

tion. Therefore the gap junction model is stable under any external stimuli as it does not

depend on Iext.
Moving on, the individual terms of the Jacobian for the Chem type I model takes the form

of Eq (24). At equilibrium, the sigmoid functions have a value of 0.5 (as per how Vthreshold is

constructed in this model [85]). The Jacobian for this chemical model depends on the external

stimuli indirectly through Vi (Eq (20)) situated in the off-diagonal terms of the Jacobian.

JChemI :
@Vi

@Vj
¼ � aleakdij � a

chemdij

Xn

j¼1

~Achem
ji FðVjÞ

þ achem ~Achem
ji FðVjÞð1 � FðVjÞÞgðVi � Vs;jÞð1 � dijÞ

ð24Þ

Analyzing the eigenvalues of the Jacobian matrix at the stable point solutions when

Vi ¼ V threshold
i , determined by Eq (18), shows which neurons will have unstable voltages for a

given constant Iextj value. For the F-Chem networks with integer weights under the Chem type

I model, most of these eigenvalues remain real and negative as the external stimuli applied to

neurons PVC or AVB are varied from −500pA to 500pA. An exception occurs for the eigenval-

ues associated with the neurons that receive external stimuli. For PVC stimulation, the real

part of its eigenvalue linearly crosses into the positive regime for external stimuli greater than

3.08pA or less than −2.38pA (Fig 15A). This eigenvalue is accompanied by another that mir-

rors its behavior. These two eigenvalues have the same value at 0.35pA of external stimuli

(dashed black line in Fig 15). This occurs because when the external stimuli take this value, the

leaking potential term in Eqs (12) and (13) approach zero. Simulations of this model for the

respective network show a bifurcation between the left and right PVC inter-neurons values at

values higher than 3.08pA of external stimuli. A similar result can be observed for the stimulat-

ing neurons AVA in the backward chemical network with binary weights as seen in Fig 15B.

No simulation with negative external stimuli produced bifurcations.
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A look into the Jacobian of the Chem type II model Eq (25) also indicates that it is stable

under external stimuli which do not exceed specific values. Below one can find its Jacobian.

JChemII ¼

@V
@V

@V
@s

@S
@V

@S
@s

2

6
6
6
4

3

7
7
7
5
; V ¼ f _Vig ; S ¼ f _sig: ð25Þ

At equilibrium, the voltage values of the neurons Vi equal that of the Vthreshold as in Eq (18)

[85]. Therefore, the sigmoid function takes a value of 0.5, and the synaptic variable term equals

seq. This Jacobian is indirectly affected by the external stimuli through the Vi terms, which only

appear in the off-diagonal term @V
@s as it can be seen in Eq (26).

@Vi

@sj
¼ � achem ~Achem

ji Við1 � dijÞ ð26Þ

This and other stability analysis were carried out for all the combinations of ODE models,

networks, and edge types with external stimuli varying from 0pA to 500pA. In Table 1, we

show the results where the values of this table indicate the strength of the external stimuli (into

the indicated inter-neuron pairs) at which instability and the first positive eigenvalue arise. For

all cases, only one positive eigenvalue (value underscored in Table 1) was above a reasonable

strength based on multiple electrophysiological studies done on C. elegans [45, 46, 98].

Knowing the maximum strength of the external stimuli at which no instabilities appear, we

stimulate their respective network + ODE model with a constant input equal to 90% of the

external stimuli necessary to cause instability in the network plus a sinusoidal (or noise) stimu-

lus with an amplitude 5% of the instability strength. To test through simulations that the

Fig 15. Stability analysis results. (A) Eigenvalues of the Jacobian for the integer edge weighted F-Chem network under the Chem type I model as the

external stimuli through inter-neurons PVC is incremented from −6pA to 6pA. The first positive eigenvalue happens at 3.08pA of external stimuli. (B)

Eigenvalues of the Jacobian for the integer edge weighted B-Chem network under the Chem type I model as a function of constant external stimuli

input through AVA inter-neurons. First positive eigenvalue happens at 34.1pA of external stimuli.

https://doi.org/10.1371/journal.pone.0297669.g015
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neurons of these graphs synchronize to those stipulated by fiber and/or orbit partitioning we

stimulate some of the neuron in these network. Gap junction networks were driven through

inter-neurons AVB and motor-neuron DB04 for the forward network and inter-neurons AVA

and motor-neuron DA05 for the backward network. This additional driving signal applied to a

motor-neuron is needed for the Gap junction models as these networks globally synchronize if

there is only one driving signal irrespective of the network. The introduction of a second signal

with different characteristics (frequency and phase) aids in breaking the global synchroniza-

tion revealing the expected cluster synchronizations. For the Chemical synapses networks we

stimulate PVC neurons for the forward network and AVA neurons for the backward network.

We set the inter-neurons frequency to 2Hz and that of the motor neurons to 1Hz. We calcu-

lated the LoSmatrix for each of these simulations and rounded entries lower than 1 to 0.

These resulting matrices were subtracted from their idealized LoSmatrix obtained from

fiber partitioning where these have diagonal block elements equal 1 (elements inside squares

delineated with red lines in Figs 11–13) and all other entries equal zero. This subtraction was

divided by 2 times the number of elements in LoSmatrix without counting diagonal elements.

A zero value in these indicates a perfect agreement with the idealized LoSmatrix from fiber

partitioning. A negative value indicates additional synchronization between two or more bal-

anced colored groups. A positive value would indicate that the expected fiber partitionings

were not found or disagree in some form.

Table 2 presents the results of our analysis. According to these results, all networks, regard-

less of the ODE model or type of edge, separate into distinct synchronous groups under the

Table 1. Instability analysis. Results for all combinations of chemical ODE models, networks and edge types. An external stimuli drove each of these networks through

increasing strength from 0 up to 500pA until a positive eigenvalue emerged. These neurons are shown in the third column. Results are given in pico-Amperes.

ODE MODEL NETWORK NEURONS BINARY(pA) INTEGER(pA)

CHEM TYPE I Forward PVC 1.5 3.08

AVB 14.46 265.4

Backward AVA 54.15 34.1

AIB+RIM 2.29 2.29

AVD 11.31 14.83

CHEM TYPE II Forward PVC 1.06 1.25

AVB 58.72 4.51

Backward AVA 13.6 8.51

AIB+RIM 1.12 1.12

AVD 4.89 3.46

https://doi.org/10.1371/journal.pone.0297669.t001

Table 2. Synchronization among fibers. Synchronization difference between the LoSmatrix of a driven network and its ideal LoSmatrix. A value of zero indicates perfect

agreement between the LoSmatrix of a driven networks and its ideal LoSmatrix with distinct synchronous groups. A negative value indicates that two or more minimal

balanced colorings have the same value at the same time. A positive value would indicate that the dynamics of its neurons do not cluster synchronize to the partitioning of

the minimal balanced coloring. The networks here were driven through inter-neurons mentioned in Sections. The best ODE model to differentiate synchronous partition-

ings was the Chem type II model.

ODE MODEL NETWORK BINARY INTEGER

CHEM TYPE I Forward 0 0

Backward -0.009 0

CHEM TYPE II Forward 0 0

Backward 0 0

GAP TYPE Forward -0.12 0

Backward -0.16 -0.16

https://doi.org/10.1371/journal.pone.0297669.t002
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LoSmetric. This finding confirms the partitions obtained via fiber partitioning. We did not

observe any agreement in orbit coloring for the B-Chem network, which would have led to a

positive entry in Table 2 by dividing diagonal boxes into two or more diagonal boxes. The neg-

ative values in this table indicate that some of the cluster cells expected from fiber partitioning

synchronize with one another, but this is not a negative result because fiber partitioning only

requires neurons in a fiber to synchronize and does not preclude different fibers from

synchronizing.

Simulation test 3 results. We examined neuron synchronization and fiber partitioning

agreement, testing robustness by adding random edge weights to simulate missing or uncer-

tain information. We added normal distribution weights (std. dev. 0-0.1 in 0.01 steps, with 0

mean) to all weights, and stimulated the same neurons as in simulation test 2 in ten separate

occasions with all the resulting LoS being averaged (see LoSmatrices of Fig 16). The LoS
obtained from simulation test 2 was binarized (elements below a value of 1 were zeroed) and

used as a mask on the averaged results. The resulting matrices were subtracted from the mask-

ing matrix.

In this simulation, the driving signals are composed of a constant input of 0.1pA plus an

oscillatory term with a frequency of 2Hz for inter-neurons and 1Hz for motor-neurons with

an amplitude set to 0.5pA plus a Gaussian random walk scaled between −0.01pA and 0.01pA.

Fig 16. Effects on synchronicity due to randomizing non-zero weights. The addition of a normally distributed amount (with zero mean) to the non-

zero weights of all the networks studied here (Gap and Chem type II models) is studied. Each perturbed network is simulated for 5 seconds with the last

second used to calculate its LoS and subtracted from the idealized LoS (see Fig 13B for an example). The difference is only calculated on the expected

minimal balanced coloring synchronizations (diagonal blocks). Examples of the LoS calculated for the F-Chem-Integer, B-Chem-Integer and B-Gap-

Integer networks are shown from top to bottom respectively.

https://doi.org/10.1371/journal.pone.0297669.g016
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This gives a max amplitude of 0.61pA, below any of the values that would induce instabilities

in any of our networks as seen in Table 2. All initial voltages were set to −35mV, and all initial

synaptic variables to seq. Fig 16 shows the results. Varying weights affects LoS synchronicity of

networks similarly, regardless of binary or integer edge weights (continuous and dotted lines,

respectively). Backward chemical locomotion network is slightly more robust to weight

changes than forward chemical locomotion network. All gap junction model synchronizations

are robust to weight changes. However, most synchronicities were lost when measured

through the strict LoSmethod, which requires signals to have the same value at the same time

within a distance less than σ = 0.1mV. Different synchronicity measures may lead to different

conclusions about the dynamics of stimulated networks. For instance, in the case of the integer

edge-weighted F-Chem network with edge weights having a standard deviation of 0.05, its

dynamics are illustrated in Fig 17. Although LoS analysis shows no synchronizations, the PLV
metric demonstrates that neurons of the same minimal balanced coloring exhibit high syn-

chronicity under phase synchronicity. As such, by relaxing the constraint of synchronicity

from having the same value simultaneously to having the same instantaneous phase, it is possi-

ble to highlight the synchronicities expected from fibration symmetries. This was seen for all

other networks as well.

Discussion

We found that, in the case of the gap junction networks presented here, orbits and fibers coin-

cide. This is a direct consequence of an undirected graph, where nodes have the same value for

their in/out-degree. This similarity is lost when considering a direct graph where this condi-

tion is broken. Generally, in a directed graph, orbits and fibers do not coincide (unless some

modular structures are present). As expected, we found that in these circumstances, the num-

ber of fibrations symmetries was higher than the automorphism symmetries (due to the less

Fig 17. Phase synchronization results. (A) Dynamics for the forward chemical integer edge weighted network (with an average edge weight of 2.6

before any edge alterations). This network was driven through inter-neurons PVC as explained in section: Simulation test 3 results. The alterations to

it’s edges weights were done by adding to them normally distributed numbers with standard deviation 0.05 and mean 0. (B) Phase Locking Value (PLV)

matrix of these dynamics.

https://doi.org/10.1371/journal.pone.0297669.g017
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restrictive constraints) for only one of the networks. More symmetries translate to less number

of clusters, as depicted in Fig 4.

We discovered a non-trivial fiber partitioning of various neuronal classes. Across all subnet-

works studied, we found that the left- and right members of each interneuron class AVA,

AVE, AVD, AVB and RIB each receive a class-specific balanced coloring (Figs 4, 6 and 7). This

is consistent with our previous findings that pairwise correlations between the activities of left-

right- bilaterally symmetric neurons are the strongest across the worm brain [17]. Moreover,

we find that motor-neurons in the ventral cord partition into unexpected sub-groups, that are

not simply explained by their body positions along the anterior- to posterior body axis, nor by

the body wall muscle segments they innervate (Figs 4, 6 and 7). These motor-neurons have yet

not been recorded and identified altogether simultaneously, however our previous work indi-

cates that all A-class and all B-class motor neurons are highly correlated with each other

respectively when recorded in immobilised worms (reference. Kaplan, Salazar 2021). Our anal-

yses performed here suggests, that those subgroups that receive the same balanced coloring

synchronise further, a prediction that can be tested in future whole nervous system calcium

imaging recordings. We speculate that these subgroups also relate to each other functionally,

by perhaps contributing similarly to the worms locomotion behavior or controlling different

aspects of it e.g. undulation speed, curvature or other aspects of body posture. Testing this

hypothesis will require recording their activity simultaneously in freely crawling worms.

The fiber building blocks (FBB) of the directed networks with binary edges were explored.

It was discovered that the B-Chem network is conformed by Fibonacci fibers which indicates

that the inter-neurons conforming this network have nested loops which indicate a high

degree of complexity for this group of nodes driving the motor-neurons of the system. For the

F-Chem network did not show to be conformed by the FBB with nested loops but did show

that some of its motor-neurons are composed by multilayered building blocks indicating that

some of the neurons of this system become synchronous indirectly through neurons with two

degrees of separation. This helps with the robustness of the network as destroying some neu-

rons will not affect the synchronicity of other neurons in the same fiber. Our partitioning into

elementary building blocks suggest that some of these motifs serve some computational roles

in the generation of locomotion. Whole nervous system calcium imaging recording of all of

these neurons simultaneously could provide insights into the types of these computations.

Understanding the stability of the equations used to simulate the neuronal interactions in

these networks aided to determine the parameter space for which the partitions under different

conditions were valid. The equitable partitions found by fibration and automorphism theory

predicts only the existence of the cluster synchronization solutions and does not mention any-

thing about their stability. Investigation of this aspect can only be done numerically. We per-

formed simulations of interacting simulations according to Eq (10).

First, we assume no external stimuli, and we compare the partitions found by means of

fibrations in the C. elegans network with those found through the Level of Synchronicity mea-

sure (LoS) based on dynamical simulations. For all networks and for all admissible ODE mod-

els regardless of the edge type we found perfect agreement between the expected minimal

balanced coloring partitionings and the block of synchronicity. For the F-Chem type II

weighted case, we found perfect separation of the expected fibers. In the binary case, we find

that inter-neurons PVC and motor-neurons VB07 and VB09 synchronize. This deviation is

more evident in the case of B-chem networks, where several minimally balanced colorings

became synchronous with other minimal balanced colorings. Having two or more distinct

clusters (a group of neurons with the same balance coloring) be synchronous with each other

is not an unexpected result and can be expected based on the theory of equitable graph parti-

tionings such as that or orbits and fibers. While the theory does stipulate that two nodes with
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the same balanced coloring will be synchronous, it does not stipulate that two nodes with dif-

ferent balanced coloring will not be synchronous. There are no restrictions to how differently

colored nodes behave [27, 99].

Overall, the integer-weighted version of the Chem network with synaptic variables is the

best model when it comes to distinctively separating expected synchronous groups regardless

of the ODE model. The final synchronization remained the same as in Fig 12 as the standard

deviations for the initial voltages and synaptic variables varied from 0 to 0.1. This configura-

tion is expected as the stable point solutions (Vthreshold) of any of these models are independent

of initial conditions [53, 85].

To simulate more realistic conditions, we increased the external stimuli, ensuring not to

change the partitionings of the networks (balanced colored external stimuli). We found that

the gap junction model is stable under any external stimuli as it does not depend on the exter-

nal factor Iext.
As for Chem networks, we found that at a strength greater than the ones indicated in

Table 1, a voltage bifurcation arose for the pair of neurons with a Iext greater than zero and, by

such, broke the pair’s predicted synchronization from that of the minimal balanced coloring.

The expected synchronization patterns of all other neurons remained the same as the ones pre-

dicted by the minimal equitable partitioning. All but one (underlined value) of the values in

Table 1 seem within reasonably stable. This is consistent with electrophysiological recordings

of a set of C. elegans neurons showing stable responses when stimulated with an external cur-

rent source [14, 45, 98].

We found that integer-weighted chemical networks are more resistant to external stimuli

when it comes to preserving their fiber structure. Their binary version behaves similarly, but

for the case of B-chem, type II. No orbit coloring agreement was found for the B-Chem net-

work. An agreement of this type would had lead to a positive value in Table 2, a result due to

diagonal boxes being divided into two or more diagonal boxes (because we already know there

are more orbits than fibers in this case, as noticed in the previous section).

We finally repeated the previous analyses in the scenario where only partial information

about the connectome networks is available. According to our findings, missing information

affects in a similar way both the binary and weighted versions of a given network. Nevertheless,

gap-junctions networks are more robust to missing information, followed by backward chemi-

cal networks. Nevertheless, almost all synchronicities were lost when measured through the

LoSmethod. This is due to the strong constraints required by the LoSmetric. Indeed different

metrics, like the PLV, reveal that neurons of the same minimal balanced coloring are still

highly synchronous under phase synchronicity. These findings are also in par with [68] where

a simple symmetric network of artificial neurons constructed from resistors and capacitor is

still able to achieve synchronization for most configurations even though these components

have an approximate 5% error in their expected parameters. The change in the networks

weight can be transformed into each neuron having a different coupling strength (σChem or

σGap) where the networks weight are returned to their integer or binary setting.

The end goal of studying these sub-networks is to predict synchronization based on the

connectivity patterns which based on theory these should be reflected as activity patterns in

live recordings [17]. Indeed, Haspel et al. [100] created a repeating unit containing the differ-

ent classes of motor-neurons and body-wall muscles that intend to capture missing links from

[8]. Six of these units are stitched together in series to form the entirety of a symmetric neural

infrastructure underlying the locomotion of the C. elegans; this inherently leads to the synchro-

nicity of the neurons and muscles when modeled through simulations [101]. Similarly, we use

symmetrized networks which are repaired versions of an original connectome that preserve
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most of the original structure. On the repaired networks, we measure fibration symmetries to

predict the synchronization of neurons based on their structure.

Conclusion

Here, we present a theoretical framework suggesting that symmetries in the graph structure of

a neuronal network underlie functional synchronizations. We explored some of the fiber

building block of the networks presented here and found that they are composed by multilay-

ered blocks or by block with nested loops. It was also shown that minimal balanced coloring

could be successfully used to determine the synchronicity patterns of all the symmetrized net-

works. Its performance is best when only synaptic interactions are present compared to when

only gap junction interactions are present mainly because zero to few different fiber become

synchronous. Fiber and orbit symmetries were able to capture the synchronicity patterns that

appear in purely gap junction networks. However, these synchronicity patterns are subtly dis-

tinguishable. All the undirected networks analyzed in this paper became globally synchronized

when driven by constant input. Only when these gap junction networks were driven by sinu-

soidal and random stimuli did most of the predicted synchronicity groups recover. The simu-

lation results hold true when compared to fiber coloring and should be a go to tool when

creating symmetric networks for the C. elegans where simulation may be skipped as could

have been the case in [61, 101].

On the contrary, orbit colorings do not perform as well as balance coloring in predicting

synchronizations in ODEs models like Eq (10). If the system of coupled ODEs used accounted

for the number of out going edges by varying some parameter, the dynamics of the neurons

would possibly partition into the cluster predicted by orbit colorings. However, as of now, neu-

rons and their potentials are known to only be affected by their inputs and not by the number

of their synaptic outputs, therefore its reasonable to expect that the synchronizations of neu-

rons in a connectome will obey fiber symmetries over orbit symmetries.

This study was performed under a set of idealised prerequisites i.e., a repaired connectome,

nodes and edges with identical biophysical properties and isolated chemical- and gap junction

networks. We, however, suggest that the network features described here significantly contrib-

ute to the activity patterns observable in the biological neuronal network of C. elegans. Our

work makes testable predictions about neuronal ensembles that are expected to show elevated

synchronicity and might group functionally in their control of locomotion. In future studies,

we will test these predictions using experimental neuronal recording and circuit interrogation

techniques. In the future, our approach can be applied to larger connectome datasets i.e., those

of of larval or adult fruit flies [6, 102].

Acknowledgments

Thanks to Wolfram Liebermeister for his suggestion to explore the effects of altering the

weights of these networks. And thanks to Paolo Boldi for clearing out the air when it came to

some equitable partitioning concepts.

Author Contributions

Conceptualization: Manuel Zimmer, Hernán A. Makse.

Funding acquisition: Manuel Zimmer, Hernán A. Makse.

Investigation: Bryant Avila.

Methodology: Bryant Avila.

PLOS ONE Fibration symmetries and cluster synchronization in the Caenorhabditis elegans connectome

PLOS ONE | https://doi.org/10.1371/journal.pone.0297669 April 10, 2024 36 / 41

https://doi.org/10.1371/journal.pone.0297669


Project administration: Matteo Serafino.

Software: Bryant Avila.

Validation: Bryant Avila, Pedro Augusto.

Visualization: Bryant Avila.

Writing – original draft: Bryant Avila, Hernán A. Makse.

Writing – review & editing: Bryant Avila, Manuel Zimmer.

References
1. White JG, Southgate E, Thomson JN, Brenner S, et al. The structure of the nervous system of the

nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1986; 314(1165):1–340.

https://doi.org/10.1098/rstb.1986.0056 PMID: 22462104

2. Ryan K, Lu Z, Meinertzhagen IA. The CNS connectome of a tadpole larva of Ciona intestinalis (L.)

highlights sidedness in the brain of a chordate sibling. Elife. 2016; 5:e16962. https://doi.org/10.7554/

eLife.16962 PMID: 27921996

3. Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I, Schneider-Mizell CM, et al. The complete connec-

tome of a learning and memory centre in an insect brain. Nature. 2017; 548(7666):175–182. https://

doi.org/10.1038/nature23455 PMID: 28796202
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