TEST # 2. PHYS 203. Chapters 5-7. FALL 2002. October 22, 2002.

NAME:

Problem 1. Dynamics of Uniform Circular Motion (20 points).

A small remote-control car with a mass of 1.20 kg moves at a constant speed of v=12.0 m/s in a vertical circle inside a hollow metal cylinder that has radius of 5.00 m (see figure). What is the magnitude of the normal force exerted on the car by the walls of the cylinder at (a) point A (at the bottom of the circle)? (b) point B (at the top of the circle)?

Problem 2. Work, Energy and circular motion (30 points) A package is thrown down a curved ramp as shown in the figure. The package moves from A to B through a quarter-circle with radius R=3.00 m. The mass of the package is 25.0 kg. The package starts from rest at point A and there is no friction.

- (a) Find the speed of the package at the bottom of the ramp (point B).
- (b) Find the normal force that acts on the package at point B (Hint: Notice that here the Work-energy theorem may not be useful).
- (c) Consider now that the ramp is not frictionless and that the speed of the package at the bottom is 6.00 m/s. What work was done by the friction force acting on the package?

Problem 3. Linear Momentum. Collision in a horizontal plane. (30 points)

Two chunks of ice are sliding on a frictionless frozen pond. Chunk A, with mass $m_A = 5.0$ kg, moves with initial velocity $v_{A1} = 2.0$ m/s parallel to the x-axis. It collides with chunk B, which has mass $m_B=3.0$ kg and is initially at rest. After the collision, the velocity of chunk A is found to be $v_{A2} = 1.0$ m/s in a direction making an angle $\alpha = 30^{\circ}$ with the initial direction. What is the final velocity of chunk B?

in-classexample of 2 people icesikating

Problem 4. Energy conservation (20 points)

A baseball is thrown from the roof of a 27.5 m tall building with an initial velocity of magnitude 16.0 m/s and directed at an angle of 37^o above the horizontal.

a) Using energy methods and ignoring air resistance, calculate the speed of the ball just before it strikes the ground.

- Review equations chap6
- Review equations chap6
- Review equations chap6
- Chapter 5: 5, 7, 8
- Chapter 6: 3, 4,5, 7,8,16
- Chapter 6: 8, 9

QUIZ # 4. PHYS 203. Chapter 5. Circular motion

NAME:

*

A 0.075 kg toy airplane is tied to the ceiling with a string. When the toy motor is started it moves with a constant velocity of 1.21m/s in a horizontal circle of radius 0.44m. Find the angle the string makes with the vertical and the tension in the string.

m= . 075 kg V=1.21 mls r= .44 m

$$T = \frac{2(3.14)(.44)}{1.21 \text{ m/s}} = 2.28 \text{ N}$$

$$\theta = \frac{.44}{2.28} = .192$$

$$\theta = 78.9^{\circ}$$

1

QUIZ # 5. Chapter 6. Energy and Work. PHYS 203.

NAME:

Consider a track that is one quarter of a circle with radius 1.60 m plus a level surface.

A small 0.200 Kg package is release from rest at point A and slides down the circular track until it reaches point B at the end of the circular track with speed of 4.20 m/s. From point B it slides on a level surface a distance of 3.00 m to point C, where it comes to rest. Consider that there is friction between the package and the track.

- (a) Using energy considerations, calculate the coefficient of kinetic friction on the horizontal surface.
- (b) How much work is done on the package by friction as it slides down the circular arc from A to B?
- (c) Identify the forces acting on the package when it is on the horizontal surface. Calculate the work done by each of these forces when the package goes from B to C.
- (d) Identify the forces acting on the package from A to B and determine which forces are conservatives and which are non conservative. Explain.

86. TE

B (3) QUIZ # 6. Chapter 7. Linear Momentum PHYS 203 NAME: Two chunks of ice are sliding on a frictionless frozen pond. Chunk A, with mass $m_A = 5.0$ kg, moves with initial velocity $v_{A1} = 2.0$ m/s parallel to the x-axis. It collides with chunk B, which has mass $m_B=3.0$ kg and is initially at rest. After the collision, the velocity of chunk A is found to be v_{A2} = 1.0 m/s in a direction making an angle $\alpha = 30^{\circ}$ with the initial direction. What is the final velocity of chunk B? m=5 icg = 3 kg V0=2.0mls V0=0 mls Ve = 1.00mls JB2x = UB2 COSX m, V, + m2 42 = m, Vo, + m2 Voz (5 kg) (Imis) + (3 kg) (VEL) = (5 kg) (2 mis) + (3 kg) $\frac{3}{3}$ $\frac{1}{3}$ $\frac{5}{3}$ ma= 3hg JA= /m/ Shy x Im/s. x cos 30°+ 3hgx Vezx

4:

NAME:

Problem 1. (20 points)

A 1200 Kg car rounds a corner of radius r=45 m. If the coefficient of static friction between the tires and the road is $\mu_s=0.82$, what is the greatest speed the car can have in the corner without skidding?

test speed the car can have in the corner without skidding?

$$M = 1200 \text{ kg}$$
 $M = 1200 \text{ kg}$
 $M = 120$

$$W = (1)(9,4) = .94$$

 $F_N = 14.7N$

Problem 2. (40 points)

The figure shows a 1.50-kg block at rest on a ramp of height h. When the block is released, it reaches the bottom of the ramp and moves across a surface that is frictionless except for one section of width 10.0 cm that has a coefficient of kinetic friction $\mu_k = 0.640$. Find h such that the block's speed after crossing the rough patch is 3.50 m/s.

$$\frac{1}{2} m v f^{2} + mgh f = \frac{1}{2} m v b^{2} + mgh o$$

$$\frac{1}{2} (1.5)(3.5)^{2} + (1.5)(9.8)(0) = 0 + (1.5)(4.8)(ho)$$

$$2.625 = 14.7(ho)$$

.94 + 2.625 = 14.7 ho

The initiatival everyy must be equal to the final energy (work) lost (which is added to the final energy.

ADA

?=h

Parent

10 cm

A $0.47~\mathrm{kg}$ block of wood hangs from the ceiling by a string, and a 0.070kg wad of putty is thrown straight upward, striking the bottom of the block with a speed of 5.60 m/s. The wad of putty sticks to the block.

(a) How high does the putty-block system rise above the original position of the block.

(b) Is the kinetic energy of the system conserved during the collision? no (105+ energy) (c) Is the mechanical energy of this system conserved during the collision?

(d) Is the mechanical energy of this system conserved after the collision?

3

V:= .73 %

V== V=+ 29d 0=(.737)2+2(9.87)d

TEST # 2. PHYS 203. Chapters 5-7. FALL 2002. October 22, 2002

NAME:

Problem 1. Dynamics of Uniform Circular Motion (20 points).

A small remote-control car with a mass of 1.20 kg moves at a constant speed of v=12.0 m/s in a vertical circle inside a hollow metal cylinder that has radius of 5.00 m (see figure). What is the magnitude of the normal force exerted on the car by the walls of the cylinder at (a) point A (at the bottom of the circle)? (b) point B (at the top of the circle)?

$$F_c = \frac{mv^2}{r} = \frac{(1.2)(12.0m/s)^2}{5.00m} = 34.56$$

B.

*

Problem 3. Linear Momentum. Collision in a horizontal plane. (30 points)

Two chunks of ice are sliding on a frictionless frozen pond. Chunk A, with mass $m_A = 5.0$ kg, moves with initial velocity $v_{A1} = 2.0$ m/s parallel to the x-axis. It collides with chunk B, which has mass $m_B=3.0$ kg and is initially at rest. After the collision, the velocity of chunk A is found to be $v_{A2}=1.0$ m/s in a direction making an angle $\alpha=30^{\circ}$ with the initial direction. What is the final velocity of chunk B?

m, Vf, + mz Vfz = m, Vo, + m2 V62

Before
Online

$$M_{A} = 5.0 \text{ kg}$$
 $M_{B} = 3.0 \text{ kg}$
 $N_{OR} = 2.0 \text{ m/S}$
 $V_{CR} = 0 \text{ m/S}$
 $V_{CR} = 1.0 \text{ m/S}$
 $V_{CR} = 7$

After and 33°C

$$(5.0 \text{ kg}) (1.0 \text{ m/s}) + (3.0 \text{ kg}) (V_{f_2}) = (5.0 \text{ kg}) (2.0 \text{ m/s}) + (3.0 \text{ kg}) (0 \text{ m/s})$$

$$c_{0.750} = 10$$

$$5 + 3 \text{ V}_{f_2} = 5$$

$$3 \text{ V}_{f_2} = 5$$

$$V_{f_2} = \frac{5}{3} = 1.67 \text{ m/s}$$

Problem 2. Work, Energy and circular motion (30 points) A package is thrown down a curved ramp as shown in the figure. The package moves from A to B through a quarter-circle with radius R=3.00 m. The mass of the package is 25.0 kg. The package starts from rest at point A and there is no friction.

- (a) Find the speed of the package at the bottom of the ramp (point B).
- (b) Find the normal force that acts on the package at point B (Hint: Notice that here the Work-energy theorem may not be useful).
- (c) Consider now that the ramp is not frictionless and that the speed of the package at the bottom is 6.00 m/s. What work was done by the friction force acting on the package?

Problem 4. Energy conservation (20 points)

A baseball is thrown from the roof of a 27.5 m tall building with an initial velocity of magnitude 16.0 m/s and directed at an angle of 37° above the horizontal.

a) Using energy methods and ignoring air resistance, calculate the speed of the ball just before it strikes the ground.

97.5m

Vo= 16m15

distance = 27.5 m

= mon + mgh = = = 12 mon + mgh o

 $\frac{1}{2} \sqrt{x^2} = mgh_0$ $\frac{1}{2} \sqrt{x^2} = (9.8mis^2)(27.5m)$ $\sqrt{x^2} = (2)(9.8mis^2)(27.5m)$ $\sqrt{y^2} = (2)(9.8mis^2)(27.5m)$ $\sqrt{y^2} = \sqrt{(2)(9.8mis^2)(27.5m)}$

4

2. Energy conservation and dissipation.

A 1.50-kg block is at rest on a ramp of height h. When the block is released (with zero initial velocity), it reaches the bottom of the ramp and moves across a horizontal flat surface that is frictionless except for one section of width 10.0 cm that has a coefficient of kinetic friction $\mu_k = 0.640$. Find h such that the block's speed after crossing the rough patch is 3.50 m/s.

 $V = VE_{f} - VE = \frac{1}{2} m V_{f}^{2} - \frac{1}{3} m V_{0}^{2}$ $\frac{1}{2} m V_{F}^{2} + m g h f = \frac{1}{2} m V_{0}^{2} + m g h_{0}$ $KE_{f} + PE_{0} = KE_{f} + PE_{f} + work$ $N = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + PE_{f} + work | energy$ $V = VE_{f} + WE_{f} + work | energy$ $V = VE_{f} + WE_{f} + work | energy$ $V = VE_{f} + WE_{f} + work | energy$ $V = VE_{f} + WE_{f} + work | energy$ $V = VE_{f} + WE_{f} + work | energy$ $V = VE_{f} + WE_{f} + work | energy$ $V = VE_{f} + WE_{f} + work | energy$ $V = VE_{f} + WE_{f} + work | energy$ $V = VE_{f} + work | energy$ $V = VE_{f} + WE_{f}$

3. Rigid objects in equilibrium.

An 85-kg person stands in the middle of a lightweight ladder (zero weight). The floor is rough; hence it exerts both a normal force, f_1 , and a frictional force, f_2 , on the ladder. The wall, on the other hand, is frictionless; it exerts only a normal force, f_3 . The length of the ladder is 8 m and the ladder makes an angle of 50^0 with the floor. Find the magnitude of the forces.

$$f_1 = FN$$
 $f_2 = FF$
 $f_3 = FN$ wan

4. Conservation of momentum and energy conservation

A bullet of mass m=0.5 kg embeds itself in a block of mass M=1.2 kg, which is attached to a spring of force constant k=245 N/m. If the initial speed of the bullet is $v_0=1.32$ m/s, find the maximum compression of the spring. The spring moves horizontally.

3. Energy conservation and dissipation.

In the track shown in the figure, section AB is a quadrant of a circle of 1m radius. A block is released at A and slides without friction until it reaches B

(a) How fast is it moving at B?

(b) The horizontal part has friction. If the block comes to rest 3m from B, what is the friction coefficient?

A Sp=? C Sc=0

1 Doming fred Ma

4. Rigid objects in equilibrium.

A uniform 400 N boom is supported as shown in the figure. Find the tension in the tie rope and the force exerted on the bottom by the pin at P.

2.)NEWTON'S EQUATION: 20 POINTS) TEST #1

In the figure of an object m1=20kg moves on a surface with friction coefficient of 0.5. its connected to a mass m2=5kg by a massless cord that passes over a frictionless pulley. Find that acceleration of each body and the tension in the cord.

TEST #1

2. Kinematic in 2D

A golf built is hit off with an initial velocity of 30 to/s at an angle of 35° to the horizontal

- (a) (11 points) What is the maximum height reached by the bell?
- (b) (11 points) What is the range?
- (c) (6 points) What is the magnitude and direction of the aceleration and velocity at the maximum height?
 - (d) (6 points) What is the time of flight, that is, the time to reach the ground again?

3. Forces

Two blocks are connected by a string, as shown in the figure. The smooth (freticuless) inclined surface makes an angle of 35° with the horizontal, and the block in teh incline has a mass $m_1 = 5.7$ kg. The mass of the hanging block is $m_2 = 3.2$ kg.

- (a) (18 points) Find the direction and magnitude of the hanging block's acceleration.
- (b) (14 points) Find the tension in the rope.

TEST # 1. PHYS 203, SPRING 2012.

NAME TEST #1

1. Kinematic in 1D

Yest throw a ball straight up. The ball has an initial speed of 11.2 m/s when it leaves your hand

- (a) (11 points) What is the maximum bright the ball reaches relative to the three-inc point.
 - (b) (11 points) How bog does it take the ball to reach this bright?
 - (c) 66 pouces. What is the position of the ball at $t = 2k^2$.
 - (d) (6 points) As what height does the ball have a speed of +5m/s?

TEST # 2. PHYS 203, SPRING 2012.

TEST #2

NAME

1. Energy, 35 points.

The figure shows a Life-kg block at rest on a ramp of height h. When the block is released, it reaches the bottom of the ramp and moves across a surface that is frictionless except for one section of width 10 cm that has a coefficient of kinetic friction $\mu_k \approx 0.64$. Find h such that the block's speed after crossing the resign patch is 3.50 m/s [Remember that the force of friction is $f_k = \mu_k N$, where N is the portral].

$$W_{NC} = \Delta E$$

$$W_{NC} = E_f - E_o$$

$$- \mu_{A_c mg. 0.1m} = \frac{1}{2} m (3.5 m/s)^2 - mg.h$$

$$gef h.$$

TEST#2

2. Momentum, 35 points.

The picture shows a collision between two packs. Pack A has a mass of 0.025 Kg and is moving along the x axis with a velocity of 5 m/s. It makes a collision with pack B, which has a mass of 0.05kg and is initially at rest. The collision is not band-on. After the collision, the two packs fly apart with angles shown in the figure. Find the final speed of pack A and B.

before

UA = CHORD

UB=0

after

TEST#3

TEST # 3. PHYS 203. Spring 2012

NAME:

1. Springs. (35 points)

A block with mass $5.0~\mathrm{kg}$ is suspended from an ideal spring having negligible mass and stretches the spring $0.20~\mathrm{m}$ to its equilibrium position

(a) (5 points) What is the force constant of the spring? (b) (30 points) The spring is then stretched 0.80 m from its equilibrium position and then released with velocity zero. Calculate the velocity of the mass when the mass passes again through the equilibrium position.

510/50

10

3. Rigid objects in equilibrium, 30 points.

A 5m long diving board of negligible mass is supported by two pallars. One pillar is at the end left of the diving board, the other is 5.50 m away. Find the forces exerted by the pillars when a 90-kg diver stands at the far end of the board.

TEST #2

3. Energy (20 points)

Consider the track plan a level surface as shown in the figure.

A 4 kg package is release from rest at point A and slades down on a frictionless track until it tenches point B with speed of 4.20 m/s. From point B it slides as a local surface with friction coefficient μ_0 a distance of 3.00 m to point C, where it comes to test. (a) (10 points) Calculate the height H_c (b) (10 points) Calculate the coefficient of kinetic friction on the horizontal surface.

FINAL, PHYS 203, Spring 2012

NAME:

SEAT NUMBER:

TEST #1

1. Kinematics (20 points)

A batter him a basefull so that it leaves the but with an initial speed to = 60 thm/s at an initial angle \$ - 42" with the learning at

Find:

- (a) The position of the ball and the magnitude and direction of its velocity at 1-2 s. (5) points)
 - (b) Find the time when the ball reaches the highest point of its flight. (5 pages)
 - (c) Find the height H and the acceleration at this point $\,$ (5 points)
 - (d) Find the horizontal range R. (5 points)