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HIGHLIGHTS

Jamming has precursor in emergence of giant 3- and 4-cores in same-size ER networks.
Shear stress begins to increase near giant 3-core emergence in ER networks.

Shear stress has density-independent discontinuous jump at isostatic point.

ER networks’ 3- and 4-cores jump in size around same coord. numbers as packings.
Applications include constraint satisfaction, computer science, math, soft materials.
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Frictional packings

The jamming transition occurs when granular materials reach a certain density, preventing particle motion [1]. The
system then jams into a disordered packing state that can sustain a non-zero shear stress. The jamming transition is
a ubiquitous phenomenon that occurs not only with grains but also with other soft materials like emulsions, colloids,
and glasses. Finding the maximum density at which materials can pack in such a disordered state has ramifications in
optimization theory also; the jammed state can be thought of as a set of solutions to a large class of constraint satisfaction
problems [2]. Thus, any insight into the nature of the jamming transition has implications for many problems in disciplines
ranging from physics to computer science and mathematics.

Alarge number of studies have therefore been devoted to understanding the underlying nature of the jamming transition.
Early work noted that the transition is driven by the coordination number, or average number of contacts of the particles
in the contact network [1]. The transition has been identified with the isostatic point at which all particles in the packing
begin to satisfy force-balanced equations [3-7]. Further theoretical refinements have been developed, including approaches
inspired by spin-glass theory applied to hard-sphere glasses [8], and statistical mechanical ensembles of equally-weighted
jammed configurations [2,9].

Here we show that there is a simpler topological reason underlying the jamming transition: it is dominated by the sudden
emergence of the giant k-core in the contact network. The k-core, a topological invariant of the contact network defined as
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the unique largest subgraph with minimum degree (i.e., coordination number) of at least k, was introduced in the field of
social sciences [ 10] to quantify social network cohesion. It has since been applied broadly to network science in general: it can
help to explain how influential spreaders viralize information in a social network [ 11]; robustness of random networks [12];
structure of the internet [13,14]; large-scale structure of the brain [15]; and collapse of ecosystems [16].

Related to the concept of the k-core, k-core percolation is a well-known mathematical problem [12,17] that studies
the sudden emergence of giant k-cores (k-connected subgraphs) as the network goes through a series of discontinuous
transitions of mixed nature with first- and second-order features, when one increases the number of links in the network.
For a random Erddés-Rényi (ER) network [18], an ensemble of nodes in random networks effectively defined in infinite
dimensions which ignores all correlations between contacts, this problem has been analytically solved by Wormald and
collaborators [17]. It was shown that subsequent k-cores appear at well-defined average degrees (average coordination
numbers in the contact network). The giant 2-core, or giant component studied in percolation, appears gradually at average
degree c; = 1 as shown by the classic result of Erdés and Rényi [ 19]. However, it was shown that for k > 3, the subsequent
giant k-cores appear suddenly through first-order transitions at sharply defined values of the average degree where the size
of the corresponding k-core jumps from zero to a finite value, usually quite large compared to the total size of the network.
For instance, the 3-core appears suddenly at c; &~ 3.35, jumping from zero to an occupancy (number of nodes in the k-core
divided by total number of nodes) of p3 &~ 0.27. Subsequently, the 4-core appears at ¢4, ~ 5.14 with occupancy p4 ~ 0.43,
while the 5-core appears at cs &~ 6.81 with occupancy ps ~ 0.55. Notice that none of these transitions coincide with the
isostatic transitions at ¢ = 2d (frictionless) or c = d + 1 (frictional) for a jammed system in d dimensions. The predictions
of k-core percolation are valid in an ER network. The dimensionality of the problem does not appear in the ER formulation
and the resulting network is fully random; it is a solution obtained in the mean-field approximation.

We employ a quasi-static shear protocol to numerically study the jamming transition of a 3-D packing of frictional spheres
with increasing coordination number as the system jams under shear. We construct the network of contact points and study
the emergence of the giant k-cores in turn. As the shear strain is increased, the contact networks develop giant k-cores in
succession exactly at the precise values ¢, predicted by theory for an ER network [17]. In particular, the precursor of the
jamming transition occurs at c3 &~ 3.35 (rather than the isostatic point ¢ = 4) with the appearance of the giant 3-core.

The similarity between k-core percolation and the jamming transition have been shown in previous works by Schwarz
et al. [20]. The critical exponents defining the jamming transition, including 8 = 1/2, y = 1/2,and v = 1/4, which measure
the dependence of the coordination number, the vanishing of the shear modulus, and the diverging length scale, respectively,
with the volume fraction near the jamming transition, have been calculated numerically [3-7,20]. The values ¢, mentioned
above are not discussed in [20]. As the coordination number c is lowered from above to the value at which jamming occurs,
it depends on the exponent 8 as (c) = Cjgm + Co(¢ — q}jam)ﬂ for volume fraction ¢, with subscripts jam and 0 denoting the
value where jamming occurs and the starting value, respectively; the shear modulus, or ratio of shear stress to shear strain,
disappears as the exponent y goes to 1/2; and the exponent v describes the divergence of the length scale [20]. They agree
with those predicted by k-core percolation [20]; therefore, these results further stress the analogy between jamming and
the k-core.

The solution of Wormald [17] captures very precisely the location of the average coordination number at which each k-
core appears in the shear jamming data. This result is surprising since the ER solution is valid in infinite dimensions for a fully
randomized network where the correlations introduced by the finite size of the particles in 3-D are ignored. The agreement
between an infinite-dimensional result and a finite-dimensional 3-D simulation indicates that correlations introduced by
the particles’ constraints are irrelevant—the jamming transition may be a simpler constraint satisfaction problem than
previously thought.

We use the jammed packings already obtained in [21] where a series of packings at different volume fractions that jam
under shear at different values of the shear strain were produced using an athermal quasi-static shear protocol. The system
is monodisperse and composed of N = 2000 spheres interacting via repulsive harmonic potential, subjected to athermal
quasi-static shear deformation. To implement shear, we first do an affine transformation on a system of frictionless particles
in small steps, followed by energy minimization using a conjugate gradient method and periodic Lees-Edwards boundary
condition at shear strain y. Initial configurations at different volume fractions (¢ = 0.56 — 0.627) for shearing are produced
by starting from an equilibrated hard sphere fluid at ¢ = 0.45; a fast initial compression is effected using a Monte Carlo
simulation until the desired density is reached.

The obtained contact network is then used as input to solve for force and torque balance conditions as described below,
allowing for both normal and tangential forces, corresponding to friction. Past work [22] has demonstrated that sheared
frictionless spheres evolve contact geometries that can support finite stresses if frictional forces are also present [22].
We estimate the normal and the tangential force components independently, i.e., in the limit of infinite friction: for a
given contact network, we write the force and torque balance conditions in compact form as M | F) = 0, where M is a
((@)N x DC) matrix, C is the number of contacts and | F) is a vector of size DC x 1, with 3 for D = 3, force components
(f", f?, f¢) for each contact. The matrix M is constructed from unit vectors between spheres in contact. Using M, we construct
an energy function E = (F | MTM | F) which we minimize to obtain force balance solutions. We minimize the energy
function by imposing positivity of normal contact forces, since we treat systems with repulsive interactions only.

The results obtained in [21] are replotted in Fig. 1 as a function of the coordination number. For all packings examined,
a discontinuous jump is seen in the inset of the figure, in the xz-plane shear stress (oy,) around oy, = 5 x 1072 (indicated
by the horizontal dashed line in both the figure and the inset). The jamming transition occurs at the isostatic point, given
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Fig. 1. Jamming transition. Shear stress versus coordination number collapse into a single curve for all volume fractions. Inset shows the uncollapsed data
when plotted as a function of the shear strain.

Fig. 2. Definition of k-core, k-shells and maximum k-core.

by the vertical line in Fig. 1 marked “ci,, = 4", for a 3-dimensional jammed system of frictional particles. This value is
approximately independent of the packing’s volume fraction ¢; indeed, the data for all packings collapse to a single curve
for different ¢. This isostatic transition appears to have a precursor where shear stress starts to increase. The inset shows oy,
as a function of the strain y. Again, we see a discontinuous jump in the shear stress at the jamming transition, occurring at
density-dependent values of y unique to each particle configuration examined.

We analyze these packings to test the idea that k-core percolation is a precursor to the sudden transition observed in
Fig. 1. Fig. 2 defines the k-core of the network: the maximal subgraph consisting of nodes having degree at least k [10,12].
This subgraph is unique but not necessarily connected; k-cores might be formed by small clusters spread around the contact
network. An algorithm to extract the k-core is linear in the system size and consists of iteratively pruning nodes with
degree less than k, until the k-core is obtained. By definition, k-cores are nested, that is, the k-core contains the k+1-cores.
For instance, the 1-core contains the 2-core, the 2-core contains the 3-core, and so on. Each k-core is composed of two
structures: the nodes at the periphery (the k-shell, labeled k) and the remaining k+1-core. The periphery is defined as the
subgraph induced by nodes and links in the k-core and not in the k+1-core. The 1-core corresponds to the full network, and
its connected component is the so-called giant connected component in percolation. The 1-shell is a forest, i.e., a collection
of trees, which can be removed from the network. The resulting 2-core is statistically the same as the giant component in
percolation. For k > 3, the k-cores are not related to the giant component, appearing suddenly when we add more links to
the network. The value kJix of the largest order k-core, which coincides with the largest value of the k-shell index ks, is called
the k-core number of the network and corresponds to the innermost core of the network. It is a topological invariant of the
network, independent of how the nodes are labeled or the network portrayed, i.e., it is invariant under homeomorphisms.

We examine the set of particle configurations with volume fraction ¢; associated with each configuration is a set of
packings with varying coordination numbers ¢ which capture the state of the configuration before, during, and after the
jamming transition. We begin by constructing an adjacency matrix for each packing, wherein a value of 1 indicates contact
between two particles and a value of 0 indicates no contact. A k-shell decomposition [11] is then performed on each matrix,
following the above algorithm, to determine the maximum number of k-shells km* and the occupancy in each shell from

core
k = 1 (the outermost shell) to k = k7.3 (the innermost shell, or core).
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Fig. 3. The jamming transition is described by the successive appearance of giant k-cores at coordination numbers predicted by random ER theory [17]. The
solid lines represent the theoretical predictions for the emergence of k-cores on an ER network, while the discrete points represent our data. Data plotted in
black; blue; red; green; and cyan represent the populations of the 1- through 5-cores, respectively, while each shape represents a different volume fraction.

We find not only an increase in ko with increasing coordination number c (i.e., contact networks with higher

coordination numbers have more k-shells), but also a rapid transition in the occupancy of ki’x when a new k-core emerges.

As can be seen in Fig. 3, upon the emergence of a new k%, the occupancy of the previous k{ax rapidly falls to a minimum,

while the occupancy of the new k73X sharply increases. Furthermore, plotted across all of the networks under consideration
here, these occupancies collapse to a single curve, with the transition happening at roughly the same point for each packing
network regardless of volume fraction.

The points at which the new k-cores emerge in the networks of the packings correspond closely to values theoretically
determined via k-core percolation in random Erdés-Rényi networks by Wormald [ 17]. These transition points are indicated
in Fig. 1 by vertical lines at c; = 3.35 and ¢4 = 5.14 (for the 3-core and 4-core, respectively) and also clearly indicated in
Fig. 3. Notice also that the percolation transition at c; = 1 where the giant component (the 2-core) appears is irrelevant for
the jamming transition, since it appears way before the larger cores that provide rigidity to the packing. Indeed, jamming is
preceded by the appearance of the giant 3-core and not the giant connected component, which is a tree at the transition point
whereas the 3-core is a well-connected structure. It appears suddenly rather than continuously (like the giant component)
or by nucleation, jumping from zero to a finite fraction of nodes given by ps. The sudden appearance arises from jamming
requiring a global condition of force balance to be satisfied throughout the packing, which cannot be satisfied by nucleation
of specific regions. This global feature of jamming might explain the surprising result of why the physics of jamming is
captured by a simple mean-field infinite-dimensional fully-random non-perturbative k-core solution even when the packing
is three-dimensional. Our result may not be directly relevant for the glass transition due to the existence of finite clusters in
finite dimensions. These violate force balance in the jamming zero-temperature description; the jamming transition must
then appear as a giant core.

We arrive at a null model—the Erdés-Rényi network for this particular ¢ and number of particles—by fully randomizing
the links in the packing while keeping the degree distribution (coordination number) c. Even removing the correlations in this
manner, the transitions occur at very similar values of ¢ between the real networks and their fully randomized counterparts
(the solid lines in Fig. 3). We use a set of Erdos-Rényi networks with the same number of nodes as the packings (N = 2000)
and average degree equal to coordination number c, for c = 0.5 to ¢ = 7.0 in steps of 0.1. We then perform a k-shell
decomposition of each network, finding both the occupancy of every shell in the network, and the network’s value of kT2%

core*
For each value of ¢, 1000 ER networks are generated, and the values for ki;ix and shell occupancy are averaged over these.
The results, shown in Fig. 3 as the solid curves in black; blue; red; green; and cyan, correspond, respectively, to 1- through
5-cores. At theoretically-predicted coordination numbers ¢, and fractional k-shell occupancies py, denoted in Fig. 3 by the
dotted lines, the system undergoes transitions wherein a k 4 1-core (i.e., a new value of k723%) emerges [17]. As before,
for k > 2-cores the occupancy of the former innermost core falls sharply and discontinuously to a minimum while the
occupancy of the new core sharply and discontinuously increases. The points at which new cores emerge in the packings
match the points at which the new cores emerge in the generated ER networks, despite the occupancies of the cores being
slightly larger in the packings; this could be the only effect of the correlations between the particles. The strong similarity
between the emergence of new cores in both packings and generated ER networks thus implies that underlying the jamming
transition of the packing is the emergence of a k-core via k-core percolation.

Beyond jamming, the phenomenon of k-core percolation pertains to other systems whose components (nodes) require a
minimum number of k connections to other nodes to participate in the dominant cluster. Since the k-core sets a constraint on
the minimum number of neighboring nodes, the physics of k-core percolation describes also the onset of arrested transitions
for other systems with nontrivial constraints, such as spin glasses, glass-forming liquids, and constraint satisfaction problems

(CSP) [23]. For instance, a prototypical model of spin glass systems, known as the p > 3-spin glass model, exhibits a critical
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transition with the same exponents as k-core percolation, at least at the mean field level. Such a model is at the basis of the
infinite-dimensional jammed sphere model in [6].

In the physics of the glass transition, a way to model glassy dynamics is via kinetically constrained spin lattice models,
where down spins denote regions of low mobility of the liquid, and up spins denote regions of high mobility. A small negative
magnetic field is applied to favor down spins and thus the formation of low-mobility clusters. When the temperature of the
system is lowered, more and more of such clusters are formed, eventually leading to dynamical arrest of the liquid. The
kinetic constraint on the motion of the spins is such that a spin can flip only if the number of neighboring up spins is equal
to or greater than some integer k, which models the trapping of particles by cages made up of their neighbors. Given that
up/down spins can be mapped to present/removed nodes, this kinetic constraint maps to the k-core condition, and the
emergence of a giant cluster of low mobility regions maps to the k-core percolation.

Another important case is that of constraint satisfaction problems, where variables must take values which satisfy a
number of constraints. The random K-XORSAT is an example of such CPS [23]. In this case, the percolation of a 2-core
separates the Easy-SAT and Hard-SAT phase. In the Easy-SAT phase there is no core, so that solutions can be found in linear
time. In the Hard-SAT phase there exists a large 2-core, and no algorithm is known that finds a solution in linear time. This
is due to the existence of ‘frozen’ variables inside the core (more precisely in the backbone, which includes the core and all
nodes in a corona surrounding the core), which are fixed in all possible solutions. Similarly, in the coloring of random graphs,
frozen variables appear if and only if the q-core of the graph is extensive, where q is the number of colors.

Our results suggest that the onset of jamming in packings can be understood by the emergence of a 3-core of frozen
variables, analogously to these constraint optimization problems. Thus, a large part of the physics of the jamming transition
can be explained by this simple structural picture of the emergence of the 3-core at the analogous Easy-SAT to Hard-SAT
transition. This is indeed a rigidity transition when frozen variables appear in the dominating clusters. After the 3-core has
emerged, there is still a hard region in the coordination number that can be described by following the phenomenology of
more sophisticated spin glass type models such as the CSP above.

Furthermore, our results support the hypothesis that certain features of the k-core percolation transition in the mean field
carry over to three dimensions. The discontinuities in the occupancies of the 3- and 4-cores in Fig. 3 suggest this. Whether this
phenomenon is a true transition that survives in the thermodynamical limit will require further theoretical developments,
i.e., analytical solutions valid for infinite system size that could avoid the finite size effect inherent in our simulations. In
turn, we note that the shear stress does not show any particular behavior for the specific coordination values at which the
different k-cores appear as expected by the k-core analysis. However, the appearance of the discontinuity in the shear stress
is clearly happening at the isostatic point. In this regard, we can associate the sudden appearance of the 3-core at c3 with
the onset of the discontinuity in the shear stress. While it is difficult to define clearly this onset in terms of the behavior of
the shear stress, from Fig. 1 we can see that the shear stress starts to deviate around c3, ultimately ending in the jump at the
isostatic point.

In conclusion, the picture emerging from this study is that the onset of jamming is related to the sudden emergence of
the k-core and that the structure of the jammed packing is completely random. That is, correlations are minimal and the
transition is captured well by an ER network—an infinitely dimensional network with no correlations.
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