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A phase diagram for jammed matter

Chaoming Song', Ping Wang' & Hernan A. Makse'?

The problem of finding the most efficient way to pack spheres has
along history, dating back to the crystalline arrays conjectured' by
Kepler and the random geometries explored® by Bernal. Apart
from its mathematical interest, the problem has practical rele-
vance® in a wide range of fields, from granular processing to fruit
packing. There are currently numerous experiments showing that
the loosest way to pack spheres (random loose packing) gives a
density of ~55 per cent**. On the other hand, the most compact
way to pack spheres (random close packing) results in a maximum
density of ~64 per cent>*°. Although these values seem to be
robust, there is as yet no physical interpretation for them. Here
we present a statistical description of jammed states” in which
random close packing can be interpreted as the ground state of
the ensemble of jammed matter. Our approach demonstrates that
random packings of hard spheres in three dimensions cannot
exceed a density limit of ~63.4 per cent. We construct a phase
diagram that provides a unified view of the hard-sphere packing
problem and illuminates various data, including the random-
loose-packed state.

Difficulties in describing static granular materials and other
jammed systems, such as compressed emulsions, stem from the lack
of well-defined conservation laws on which a statistical description of
the system can be based. Unlike in equilibrium statistical mechanics,
energy no longer describes the microstates of the system, owing to the
dissipative and athermal nature of jammed matter. Thus, many
experimental and theoretical studies focus on the analysis of the
system volume as the analogue of system energy in equilibrium ther-
mal systems’'®. Recent advances in X-ray tomography'® and confocal
microscopy'” have revealed the detailed internal structure of jammed
matter, allowing for the study of the free volume per particle, or free
volume function, denoted W (ref. 7). By partitioning the space into
a set of non-overlapping volumes with Voronoi diagrams, these
studies show that W is distributed with exponential tails'>'*'".
More importantly, experiments with monodisperse hard spheres'’
show that W is inversely proportional to the coordination number
(number of contacts) of the particle, z.

From a theoretical perspective, the study of the ensemble of
jammed matter requires an analytical form for W (refs 7, 9, 10, 15).
We first derive the Voronoi volume in terms of the particle positions
(see Supplementary Information section IA) and then use statistical
analysis to coarse-grain the Voronoi volume over a mesoscopic
length scale, obtaining a mesoscopic free volume function (see
Supplementary Information section IB) that is analytically tractable.
For monodisperse hard spheres (grains) of volume V, we find:

W(z)= ?vg (1)

The inverse relation with z is in general agreement with experi-
ments'. The calculation of W(z) is based on the environment of the
grains, where each particle is assumed to be in a uniform background
field produced by the other particles and not influenced by the

particle. Thus, equation (1) is akin to a quasi-particle theory: the
coordination number z in equation (1) can be considered a coarse-
grained average associated with ‘quasi-particles’ with free volume W.
The key result is the relation between the Voronoi volume and the
coordination number. This makes it possible to incorporate the
volume function into a statistical mechanical description in terms
of jammed hard spheres, using the constraint of mechanical stability
as we show below.

The canonical partition function in the volume ensemble is the
starting point for the statistical mechanics of jamming’, where the
role traditionally played by the energy in thermal systems is replaced
by the volume:

Q(x)= Jg(W)e-W/X@wdw 2)

Here X is the compactivity in units of volume’, determining the
macrostates of the system (see below for an interpretation of this
temperature-like parameter); g(W) is the density of jammed states
for a given volume W; and @y, formally imposes the condition of
jamming on the ensemble through force and torque balance. The
main components of the theory are the uniformity assumptions
behind the calculation of the mesoscopic volume function (see
Supplementary Information section IC), the identification of the
isostatic condition with the ensemble of jammed configurations,
and the derivation of the density of states, as we discuss below.

Distinguishing between metastable and mechanically stable pack-
ings that define the jammed state through the @,y function is an
unsolved problem'®, and is related to the more fundamental question
of whether or not a jammed packing is well defined. In practice, it is
widely believed that the isostatic condition is necessary for a jammed
disordered packing'®>’. That is, the number of force variables in the
system is equal to the number of force and torque balance equations
(see Supplementary Information section II). Therefore, we assume
that the @y, function in equation (2) restricts the ensemble to the
isostatic packings.

It is important to note that the coordination number z, as defined
in equation (1), refers to the geometry of the packing and does not
refer to contact forces. Therefore, z can include ‘trivial” contacts with
zero force, not contributing to the mechanical balance. We call z the
geometrical coordination number to distinguish it from the mech-
anical coordination number Z, which is less than or equal to z and
includes the contacts with non-zero force (see Supplementary
Information section IIT). The mechanical coordination number thus
directly corresponds to the isostatic condition of force and torque
balance. For frictionless spherical particles (with interparticle friction
coefficient pt = 0, mimicking emulsion systems), the isostatic con-
dition implies that Z=2d =6 (d is the dimension of the system,
and in the following d=3). For infinitely rough particles with
1t—> 0, the mechanical coordination number is Z=d+ 1 =4 (see
Supplementary Information section II for details). Interpolating
between these two limits there must exist granular packings of finite
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wwith Z(p) smoothly varying between Z(p = 0) = 6 and Z(u— ) =
4 (ref. 23). This is an important assumption that we test by numerical
simulation (see Supplementary Information section II), where we
find a common Z(u) curve (Supplementary Fig. 10) for different
packing preparation protocols. The mechanical coordination num-
ber ranges from four to six as a function of y, and provides a lower
bound on the geometrical coordination number: Z= z=6. These
bounds are tested in computer simulations in Supplementary
Information section IITA.

By changing variables, we can write equation (2) as (see
Supplementary Information section IV):

6
Qu(X.2)= j e WX g(2)dz 3)
Z

Owing to the implicit volume coarse-graining in equation (1), each
volume state W(z) represents a mesoscopic state containing many
microstates with a common value of zand density of states g(z). The
latter can be calculated as follows (see Supplementary Information
section IV). We assume that the hard spheres are packed in a collec-
tively jammed configuration in which no motion of any subset of
particles can lead to unjamming*. Thus, the configuration space of
jammed matter is discrete, as we cannot continuously change one
configuration to another. We denote the dimension per particle of
the configuration space by D and assume that the distance between
two configurations is not broadly distributed, with a mean distance
h,. Therefore, the number of configurations is proportional to
1/ (h,)P, analogous with that in quantum mechanics, ™%, where
is Planck’s constant and dis the dimension. The fact that the particles
are jammed by z contacting particles reduces the number of degrees
of freedom to D — z and the number of configurations is then
1 / (h,)P~%. Because the term 1 / (h,)? is a constant, it will not
influence the average in the partition function. Therefore, we have
g(2) = ()"

From equation (3) we obtain the equations of state that define the
phase diagram of jamming. We start by investigating two limiting
cases (see Supplementary Information section V). First, in the limit of
vanishing compactivity (X— 0), we obtain the ground state of
jammed matter with a density

brcp = — o ~0.634 (4)
P 6r2y3
for Z(p) € [4,6]. Second, in the limit of infinite compactivity

(X— ), we obtain

¢RLP(Z) = (hy)dz

1 6 z
Qiso(00,2) JZ z4+2V/3
_z
CZ+23

(5)

for Z(pn) € [4,6].

The average in equation (5) is taken over all states with equal
probability, because e "@'* 1 as X— %, and the approximation
applies because h, is very small and the most populated state, z= Z,
thus makes the dominant contribution to the average volume. The
meaning of the subscripts ‘RCP’ (random close packing) and ‘RLP’
(random loose packing) in equations (4) and (5) will become clear
below.

The equations of state (4) and (5) are plotted in the ¢—Z plane in
Fig. 1, illustrating the phase diagram of jammed matter. The phase
space is limited to lie above the line of minimum coordination num-
ber, Z=4 (for infinitely rough grains), labelled ‘granular line’ in
Fig. 1. All mechanically stable, disordered jammed packings lie within
the confining limits of the phase diagram (Fig. 1, yellow zone), and
are forbidden in the grey area. For example, a packing of frictional
hard spheres with Z =5 (corresponding to a granular material with
interparticle friction coefficient i = 0.2, according to Supplementary
Fig. 10) cannot be equilibrated at volume fractions below
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¢ < drip(Z=75) =5/(5+2,3) = 0.591 or above ¢ > Prcp = 0.634.
Thus, these results provide a statistical interpretation of the RLP
and RCP limits, as follows.

First, originating in the statistical mechanics approach, the RCP
limit arises as the result of equation (4), which gives the maximum
volume fraction of disordered packings. The RCP density for mono-
disperse hard spheres™*® is commonly quoted to be 63—64%; here we
physically interpret a state with this value as the ground state of
frictional hard spheres characterized by a given interparticle friction
coefficient. In this representation, as y varies from zero to infinity, the
RCP state changes accordingly. This approach leads to an unexpected
number of states lying in an ‘RCP line’ from the frictionless point at
Z =6 to the point at Z = 4, as depicted in Fig. 1, demonstrating that
RCP is not a unique point in the phase diagram.

Second, equation of state (5) provides the lowest volume fraction
for a given Z and represents a statistical interpretation of the RLP
limit depicted by the ‘RLP line’ in Fig. 1. We predict that to the left of
this line packings either are not mechanically stable or are experi-
mentally irreversible as discussed in refs 8, 11, 25. There is no general
consensus on the value of the RLP density: different estimates
have been reported, ranging from 0.55 to 0.60 (refs 4-6). The phase
diagram offers a solution to this problem. Along the infinite-
compactivity RLP line, the volume fraction of the RLP decreases
with increasing friction from the frictionless point (¢,Z2) =
(0.634,6) (ref. 21), called the ‘J-point’ in ref. 22, towards the limit
of infinitely rough hard spheres. Indeed, experiments* indicate that
lower volume fractions are associated with larger coefficients of
friction. We predict the lowest volume fraction to be ¢p}}p =
4/(4 4+ 2J3)=0.536, in the limit as u—o, X—>o© and Z—4
(h,< 1). Although this is a theoretical limit, our results indicate that
for > 1 this limit can be approximately achieved. The existence of
an RLP bound is an interesting prediction of the present theory. The
RLP limit has been little investigated experimentally, and currently it
is not known whether this limit can be reached in real systems. Our
prediction is close to the lowest stable volume fraction ever reported
for monodisperse spheres®, namely 0.550 = 0.006.

Third, between the two RLP and RCP limits, there are packings
inside the yellow zone in Fig. 1 with finite compactivity, 0 < X <ce,
In such cases we solve the partition function numerically to obtain
$(X, Z) along an isocompactivity line, as shown in the colour lines in
Fig. 1. The compactivity X controls the probability of each state,
through a Boltzmann-like factor in equation (3) (as in condensed
matter physics), and characterizes the number of possible ways of
rearranging a packing having a given volume and entropy, S. Thus,
the limits of the most compact and least compact stable arrangements
correspond to X— 0 and X — %, respectively. Between these limits,
the compactivity determines the volume fraction from RCP to RLP.

Frictionless point
6.0 (J-point)
L RLP line
55 palign RCP
line
Z 50 \
X =0
4.5F
40 Granular line
1 1 1 1 1 1
0.54 0.56 0.58 0.60 0.62 0.64

@

Figure 1| Phase diagram of jamming: theory. Theoretical prediction of the
statistical theory. All disordered packings lie within the yellow triangle
demarcated by the RCP line, RLP line and granular line. Lines of uniform
finite compactivity are in colour. Packings are forbidden in the grey area.
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Figure 2 | Representation of the volume landscape of jammed matter

(&, W). The multidimensional coordinate ¢ represents the degrees of
freedom: particle positions and rotations. Each dot represents a discrete
jammed state at a given z; those lying on a line of constant volume W share a
common z value. We present the ;¢ = o case. The states represent those along
the granular line in Fig. 1 as the compactivity varies from X = 0 (ground
state) to X — oo (RLP limit). The ground state of jammed matter for this
friction coefficient has z = 6 and the highest volume states are found for

z = 4. For other finite values of y, the space is delimited above by a line of
constant z = Z(u). All disordered packings lie in the yellow region of the
phase space, which corresponds to the isostatic plane of hard spheres at the
jamming transition where our calculations are performed. Other ordered
packings, such as the face-centred cubic, have lower volume.

These results can be visualized in terms of a ‘volume landscape’
analogous to the energy landscape in glasses®. Each jammed state
(determined by the positions and rotations of the particles, denoted
£, and the corresponding free volume, W) is depicted as a point in
Fig. 2. The volume landscape has different levels of constant W deter-
mined by z, analogous to energy levels in hamiltonian systems. The
lowest volume corresponds to the face-centred-cubic/hexagonal-
close-packed structure (with z=12), as conjectured by Kepler.
Other lattice packings, such as the cubic lattice and tetrahedron
lattice, have higher volume levels in this representation. Beyond these
ordered states, the ensemble of disordered packings is identified
within the yellow area in Fig. 2, corresponding to a system with
infinite friction. Equation (4) indicates that the RCP corresponds
to the ground state of disordered jammed matter for a given friction,
which determines Z, whereas the RLP states are achieved for higher
volume levels, as indicated in Fig. 2.

Further statistical characterization of the jammed structures can be
obtained by solving the equations of state in the three-dimensional
X—¢—S space, as in Fig. 3 (see Supplementary Information section V).

200
Minimum-
density 150
RLP

100 »

062 60 10°

Figure 3 | Predictions of the equation of state of jammed matter in the
X=-¢=S space. Each line corresponds to a different system with Z as
indicated. The projection in the X—¢ plane qualitatively resembles the
compaction curves of the experiments in refs 8, 11, 25.

LETTERS

Each curve in the figure corresponds to a system with a different Z(u).
The solution to the equation of state for ¢(X) can be seen for different
values of Zin the projection in Fig. 3. The volume fraction diminishes
with increasing compactivity according to the theoretical picture of
the phase diagram. The curves ¢(X) qualitatively reproduce the
reversible branch of compaction curves in the experiments of ref. 8
for shaken granular materials and oscillatory compression of grains®,
suggesting a correspondence between X and shaking amplitude. The
idea is that different control parameters in experiments could be
related to a state variable, and therefore might help experimentalists
to describe results obtained under different protocols. For any value
of Z, there isa common limit, ¢ — ¢rcp, as X— 0, giving the constant
volume fraction for all the RCP states. The singular nature of the
frictionless J-point is apparent from the fact that the volume fraction
remains constant for any value of X, explaining why this point is the
confluence of the isocompactivity lines, including RCP and RLP.
The existence of the theoretically inferred jammed states opens
such predictions to experimental and computational investigation.
We numerically test the predictions of the phase diagram by prepar-
ing monodisperse packings of Hertz—Mindlin spheres with friction
coefficient p at the jamming transition using previously developed
methods*”’. We obtain different packing states by compressing a
system from an initial volume fraction ¢; with a compression rate
I' in a medium of viscosity (damping) 1 (see Supplementary
Information section VIA). Although the simulations are not realistic
(we do not use gravity, boundaries or a realistic protocol), they
provide a way to test the main predictions of the theory. In Fig. 4
we plot the final state (¢, Z) reached by the system for every quad-
ruplet (¢;, I, n, ) at the jamming transition of vanishing stress, using
a method explained in Supplementary Information section VIB. As
in other non-equilibrium systems, such as glasses, the inherent path
dependency of jammed matter is manifest in the fact that different
packing structures can be realized using different preparation
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Figure 4 | Phase diagram of jamming: simulations. Numerical simulations
demonstrate how to dynamically access the theoretically found states. The
numerical protocol is parameterized by (¢;, I, 17, 1t). The main plot shows the
dependence of the final jammed states (¢, Z) on ¢; for fixed I'=10"7 and
17 =10 (except for the data plotted in orange, which is for = 10"*) and
the ¢; values 0.40 (black), 0.53 (red), 0.55 (violet), 0.57 (blue), 0.59 (green),
0.61 (pink) and 0.63 (orange). For each ¢;, the different points have different
values of y (see Supplementary Fig. 10). Solid lines represent the theoretical
results, with b, = e~ %, for the following values of compactivity X (in units
of 10_3Vg): infinity (black), 1.62 (blue), 1.38 (green), 1.16 (pink) and 0.88
(orange). The inset (which has the same axes as the main panel) focuses on
the dependence of (¢, Z) on (I, ) for two different ¢; values. Filled symbols
are for ¢; = 0.40 and the (I, #7) values (10~ 7,10 %) (black) and (10,10~ %)
(red). Open symbols are for ¢; = 0.63 and the (I, 1) values (1077,107%)
(black) and (102,10~ %) (red). The error bars correspond to the standard
deviation over ten realizations of the packings.
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protocols®'"**. Indeed, the present algorithm has analogies with

recent attempts to describe jamming using ideas from the theory of
mean-field spin glasses and optimization problems***’.

Changing the initial volume fraction ¢; produces different pack-
ings, as seen in Fig. 4. As ¢; increases, the final volume fraction
approaches the prediction of the vertical RCP line of zero compac-
tivity, demonstrating how to access the range of RCP states. All RCP
states have approximately the same geometrical coordination num-
ber, z= 6, but differ in mechanical coordination number, with values
ranging from Z= 6 to Z= 4, as predicted by the theory. When con-
sidering packings prepared with the smallest ¢;, slower compression
rates (see Fig. 4 inset) or larger viscosities of the medium, we produce
states with infinite compactivity along the RLP line. These results
agree with the experiments of ref. 5: RLP is found for slowly deposited
grains. Furthermore, packings prepared with intermediate values of
¢; closely follow the lines of isocompactivity shown in Fig. 4. Thus,
to a reasonable approximation and for this particular protocol, we
identify the density of the initial state, ¢;, with the compactivity of the
packing, which provides a way to prepare a packing with a desired
compactivity. In general, all numerically generated jammed states lie
approximately within the predicted bounds of the phase diagram (see
Supplementary Information section VIC for further details).

The numerical results indicate a way to test the existence of the
predicted packings experimentally. By allowing the grains to settle in
liquids of varying density, the speed of the particles can be varied and
a systematic exploration of the jamming phase diagram can be made.
Beyond the elucidation of some questions about the sphere-packing
problem, other problems can now be addressed systematically using
the phase diagram. These include the investigation of the criticality of
the jamming transition from frictionless to frictional systems by
extending the phase space to include stress; the characterization of
jamming in the phase space of configurations; the problem of elasti-
city and Green’s function; and the study of the distribution of forces,
volumes and coordination numbers, to name a few. An advantage of
the present formalism is that it provides a unified classification of
jammed packings using which these studies could be systematically
performed.
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