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Abstract

We study the energy-landscape network of Lennard-Jones clusters as a model
of a glass forming system. We find the stable basins and the first-order
saddles connecting them, and identify them with the network nodes and links,
respectively. We analyze the network properties and model the system’s
evolution. Using the model, we explore the system’s response to varying
cooling rates, and reproduce many of the glass transition properties. We
also find that the static network structure gives rise to a critical temperature
where a percolation transition breaks down the space of configurations into
disconnected components. Finally, we discuss the possibility of studying the
system mathematically with a trap model generalized to networks.

PACS numbers: 64.70.Q−, 64.60.aq, 64.60.ah, 89.75.Hc, 89.75.Fb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years much effort was devoted to the understanding of supercooled liquids and
structural glasses, and, in particular, the structural arrest taking place at the glass transition
temperature Tg [1, 2]. The numerical investigation of the dynamics of supercooled liquids and
glasses is very hard due to the presence, approaching Tg , of this very slow dynamics [3]. An
appealing approach for understanding this complex dynamics is to study the properties of the
system’s ‘energy landscape’: the dynamics of the system is viewed as the motion of the ‘state
point’, described by the 3n-coordinates of all particles in the multi-dimensional configuration
space, or landscape, of the potential energy of the system (n is the number of particles). The
landscape may be partitioned into ‘basins of attraction’, such that local minimization of the
potential energy maps any point in a basin to the same minimum. In recent years, it has been
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shown that the topological details of the basins and the paths connecting them are of great
importance in determining the properties of glassy systems (e.g., [4–9]).

The representation of the landscape by its basins leads to a further simplified view of the
energy landscape as a network, where the nodes are the basins and the links are the saddles
connecting them. The energy-landscape network of a Lennard-Jones (LJ) system has been
mapped, and some of its properties were extracted [10, 11] (for energy-landscape networks in
proteins and spin systems, see [12–14]). However, the influence of the topology of the network
on the dynamics of the glass transition was never studied. Here, we characterize the networks
of mono- and bi-disperse LJ systems obtained by minimization of the potential energy, and
use a dynamical model to study properties such as response to cooling. The integration of
the landscape picture with network theory provides an interpretation of the different critical
temperatures of the glass transition T0 (Vogel–Tammann–Fulcher temperature [1, 2]) and Tg ,
as well as an identification of a new critical temperature Tp where a second-order phase
transition separates a phase where a finite fraction of the configurations is available, and a
phase with a vanishing number of accessible states.

A network model for the glass transition was introduced in [4, 5]. Here, we take advantage
of more sophisticated network analysis tools such as percolation theory. In particular, our
approach takes into account the heterogeneity in the number of connections of each basin
(i.e., its degree k), which was recently shown to be ubiquitous in nature and crucial for the
understanding of many networks’ properties [15].

2. The network’s static properties

We start with a detailed analysis of the static properties of the energy-landscape network. We
focus on isolated small LJ systems of two types: (i) monodisperse LJ system (MLJ) with
n = 12, 14 particles. (ii) Binary 80/20 LJ mixture (BLJ) with n = 8 + 2 particles. Our
network reflects the landscape of potential energy (not free energy), or in other words, the
entropy is not taken into account, since we assume that all basins are equivalent in terms of
the number of internal states they represent. We note that the sizes of the systems we study
are small compared to other systems in which molecular dynamics is run [3]. However, this
is inevitable since the number of nodes increases exponentially with the number of particles
and thus larger systems are computationally much harder to study [10].

To construct the energy-landscape network, we look for basins, the local minima which
form the network nodes, and their transition states—first-order saddles which connect two
local minima and form the network links [10]. We use the LBFGS algorithm [16] to find the
basins, and the eigenmode method [17] to find the saddles. Sometimes more than one first-
order saddle connect two linked basins since the landscape is a high-dimensional surface. To
simplify the network, we consider only the saddle with the minimum energy barrier between
two linked basins. While the BLJ system is known to be glassy [3], to avoid the crystallization
process usually observed in monodisperse systems, we do not consider the state of lowest
energy when setting up the network [5]. Thus, the two systems are expected to be comparable
in terms of their glassy behavior.

The MLJ14 network consists of N = 4193 nodes and M = 58 628 links. The potential
energies of the nodes are distributed approximately normally with mean E(T → ∞) = −41.5
(figure 1(a)). The energy barriers are distributed approximately exponentially P(�E) =

1
�E

e−�E/�E , where �E = 1.64 is the average energy barrier (figure 1(b)). As observed in
[10], we confirm that the MLJ14 network is scale free [15], i.e. the degree distribution (the
probability for a node to have degree k) is broad with a tail decaying as P(k) ∼ k−γ with
γ ≈ 2.7 (figure 1(c)). The energy of a node decreases with its degree (figure 1(d)), meaning
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Figure 1. Properties of the Lennard-Jones energy-landscape network. Shown are the results for
MLJ14, MLJ12 and BLJ (see the text). In all figures the data were binned and the average is plotted.
(a) Distribution of potential energies E of the nodes. (b) Distribution of the heights of the energy
barriers �E associated with the network links. (c) Cumulative distribution of node degrees k.
Straight lines represent power-law decays of the form P(k) ∼ k−γ , with γ = 2.7, 3.1, 3.4 for
MLJ14, MLJ12 and BLJ, respectively. (d) The average potential energy of a node E versus the
degree k. (e) The average energy barrier to escape from a node �E versus the node degree k.
(f ) The average degree of node neighbors knn versus the node’s degree k.

that the deepest basins can be identified with the network hubs, and are thus accessible
to/from many other basins4. The average barrier height increases with the degree of the node:

4 Interestingly, kinetically constrained models, such as facilitated spins [31], show opposite behavior, in which the
low-energy configurations are in many times frozen and have no access to any other configuration.
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Figure 2. MLJ10 network schematic. The vertical axis represents the energy, such that nodes with
deeper energy are lower (and darker) in the schematic. Links’ cusps correspond to the energies of
the saddles, and nodes’ sizes are proportional to their degree. It can be seen that highly connected
nodes usually correspond to deeper basins.

�E ∼ kε with ε ≈ 0.43 (figure 1(e)). The average degree of node’s nearest neighbors knn

slightly decreases with the node’s degree (figure 1(f )), meaning hubs have many connections
to low-degree nodes. We also studied ‘slices’ of the network in the degree (using the q-core
method [18]) and energy planes. In both cases, we found that removing nodes of low degree,
or high potential energy, leaves the network connected.

The MLJ12 system is smaller and contains only N = 508 nodes and M = 5407 links,
leading to larger fluctuations in its statistics. Yet the properties of MLJ12 are qualitatively
similar to MLJ14. For MLJ12 we find E(T → ∞) = −33.87,�E = 1.16, γ ≈ 3.1 and
ε ≈ 0.41 (figure 1). All the results reported henceforth as MLJ are for the MLJ14 system,
unless explicitly otherwise specified. This picture holds true also for the BLJ network, with
N = 613 nodes and M = 6150 links. In the BLJ network we obtain E(T → ∞) = −30.5,

�E = 1.86, γ ≈ 3.4 and ε ≈ 0.54 (figure 1). A schematic plot of the MLJ10 network is given
in figure 2.

3. The network dynamics

Next we turn to a characterization of the dynamics of the system. We show that application of
simple assumptions about the dynamics reproduces many features of the glass transition. At
high temperatures, kinetic energy permits access to most states, while for low temperatures,
mutual access among basins becomes subject to considerable activation. In low temperatures
near the transition (more precisely, below the so-called dynamic glass transition temperature
Td , where an exponential number of meta-stable states appears [2]), the dynamics is dominated
by rare events of collective jumps among different stable positions involving many atoms.
Thus, for low temperatures, we neglect the short time dynamics which is dominated by
small vibrations within the basins, and model the dynamics of the system as activated jumps
between connected states. We assume the transition rate between a pair of linked states follows
Arrhenius law:

pij = 1

N − 1
e−�Eij /T , (1)

where �Eij is the height of the barrier separating i and j (not necessarily equal to �Eji) and
the 1/(N − 1) factor guarantees that the rate of leaving i, equals to

∑
all links (i,j) pij is less than

1 for any node. Note there is considerable probability for the system to remain at the current
state. This will turn useful in the characterization of the dynamical slowdown.
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(a) (b)

Figure 3. (a) Super-cooling in BLJ. The average energy of the system E is plotted versus
the temperature T = Ti − λt . Ti = 2 and the cooling rates are (top to bottom) λ =
0.01 × {1/8, 1/16, . . . , 1/512, 0}, where in each time step we iterate equation (2) once. Zero
cooling rate corresponds to the equilibrium Boltzmann distribution. At t = 0 we assumed all
states are equally probable. Similar results are found for MLJ (not shown). (b) The heat capacity
c = dE/dT . λ (bottom to top) is the same as in (a). Inset: the glass transition temperature Tg as a
function of the cooling rate λ. The horizontal line corresponds to T 0

g .

Experiments [1, 2] and molecular dynamics simulations [3] show that supercooling below
the melting point results in a decrease in the system’s energy, up to the temperature of the
glass transition Tg . At the transition, the system becomes frozen in a disordered configuration,
and the rate of change of energy with respect to temperature decreases abruptly (but
continuously) to a value comparable to that of a crystalline solid. We suggest that this
picture, as well as the identification of the glass transition temperature Tg , can be reproduced
using our simple network dynamics.

�i(t), the probability of the system to be at state i at time t, evolves according to

d�i

dt
= 1

N − 1

∑

all links (i,j)

�j e−�Eji/T (t) − �i e−�Eij /T (t). (2)

We solve this set of equations numerically by iterating equation (2) once in every time step
for the MLJ and BLJ networks. We use different cooling rates T (t) = Ti − λt , where Ti is
the initial temperature and λ is the cooling rate. We then calculate E(T ) = ∑

i �i(T (t))Ei ,
where Ei is the potential energy of node i. For infinitely slow cooling, the system can be
assumed to be in equilibrium, such that d�i

dt
vanishes for all i. E(T ) is calculated by setting

the Boltzmann distribution �i(T ) = e−Ei/T /Z , where Z = ∑
i e−Ei/T . The results for BLJ,

with λ = 0.01 × {1/8, 1/16, . . . , 1/512, 0}, are plotted in figure 3(a). Indeed we find that our
approach qualitatively reproduces the glass-forming behavior.

We then calculate the heat capacity c = dE/dT (figure 3(b)). We associate the
temperature for which the heat capacity is maximal with the glass transition temperature
Tg . We note that while this association is plausible, it cannot be made rigorous. As expected
[1–3, 19], Tg decreases as the cooling rate becomes slower, approaching its equilibrium value
T 0

g = 0.67(±0.01) for BLJ (figure 3(b), inset). This value of Tg is a little higher than the glass
transition temperature in a large BLJ system (≈0.45) [3]. For MLJ, the picture is similar, with
T 0

g = 0.47(±0.01).
Although in our model, microscopic transition rates follow Arrhenius law, we show

below that the global relaxation times deviate from Arrhenius behavior at low temperatures,
suggesting that LJ glass forming systems are fragile [1]. A global relaxation time is not
naturally defined for the network. However, we note that as the system evolves in time, it
explores the phase space in a random fashion, according to the transition probabilities given
in equation (1). Thus, we associate the global relaxation time with the time it takes a random
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(a)

(b)

Figure 4. Dynamical properties of the energy-landscape network. (a) The mean first passage
time (averaged over all sources and destinations) as a function of the inverse temperature 1/T , for
MLJ12 and BLJ. A super-Arrhenius behavior is observed (the slope of the curve increases with
1/T ), suggesting that the system is fragile. The lines are fits to Vogel—Tammann—Fulcher law.
(b) For several temperatures in BLJ (top to bottom: T = {2.1, 1.8, . . . , 0.3}), the evolution
in time of the average energy E(T ) was calculated. The y-axis shows E(t) − E(t → ∞)

(symbols), such that all curves approach zero. Curves were fitted with a stretched exponential
E(t) − E(t → ∞) ∝ exp[−(t/τ )β ] (lines). β ≈ 0.8 and τ is between [50,700], and increasing
with 1/T . The picture is similar for MLJ (not shown).

walker with transition probabilities as in equation (1) starting at node i, to arrive to node j (the
first passage time [20]), where i and j are randomly chosen, uniformly out of all nodes5. Given
the network and the energy barrier heights, the average first passage time can be calculated
analytically [20]. In figure 4(a), we plot the mean first passage time as a function of the
inverse temperature for BLJ and MLJ. A super-Arrhenius behavior is evident, classifying
these systems as a fragile glass [1]. The data seem to fit to Vogel—Tammann—Fulcher law
τ ∝ exp [A/(T − T0)] with T0 ≈ 0.1. However, the precise value of T0 highly depends on the
simulation details.

Time-dependent quantities can also be studied with the network. For example, the
evolution of the average energy of the system at a fixed temperature can be calculated. We use
equation (1) and assume that initially all states are equally probable. The results are presented
in figure 4(b). For short times (up to about 103 time steps) the decay fits to a stretched
exponential, E(t) − E(t → ∞) = A exp[−(t/τ )β] with β ≈ 0.8 < 1 [2]. For longer times
(not shown), the decay is exponential. As in [5], the very fast relaxation, corresponding to
transitions within a basin, is not represented in our model.

4. Percolation

In addition to dynamical properties, the network topology gives rise to a static critical
temperature Tp, where the phase space of configurations breaks into disconnected components.
This is revealed by percolation theory applied to the energy-landscape network [21].
Percolation theory is a powerful framework for the study of transport in disordered systems.
In its simplest form, it is engaged in the study of conduction in a lattice in which only a fraction
p of the sites, or bonds, are conducting [22–24]. This problem is relevant in various contexts
in which critical phenomena take place, from superconductors and gelation to forest fires and
oil searching. The theory predicts the value of a critical fraction pc above which the bulk

5 The relaxation time increases with the inverse temperature in a super-Arrhenius form even if the initial sites are
weighted by their equilibrium occupation probability exp[−Ei/T ].
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(a) (b) (c)

Figure 5. A schematic of network percolation. (a) The original network. (b) A fraction q =
1/3 (5/15) of the links are removed from the network. (c) The network after removal consists of
one large cluster of 10 nodes and two small clusters of one node each.

sample is conducting, as well as the size, dimension, total conductance, diffusion coefficients
and other properties of the percolation clusters.

In recent years, percolation theory has been successfully applied to networks to derive
criteria for network stability. In a percolation process over a network, a fraction q = 1 − p

of the network links is removed [25, 26]. A percolation transition occurs when a critical
fraction qc = 1 − pc of the links is removed such that the network disintegrates. The critical
point where the network breaks down is identified by a vanishing size of the largest connected
cluster as well as a divergence in the size of the second largest cluster [22] (figure 5).

Pictorially, the evolution of the connectivity of the energy landscape as the temperature
is lowered resembles a percolation process. At high enough temperatures, the system has
sufficient thermal energy to cross most energy barriers. Thus, connected basins are accessible
from each other and the network is intact. At low temperatures, links which are associated
with a barrier of height �E � T can practically not be crossed and thus can be considered
as absent. Thus, as the temperature is lowered, the network becomes less and less connected,
until reaching the percolation threshold where it fully disintegrates. At that point, the system
is frozen in an isolated region of the landscape, whose size is a zero fraction of the entire
phase space. A percolation transition of the phase space has been predicted long ago for spin
glasses [21]. Here, we use the network representation of LJ clusters to show explicitly how
the percolation transition is realized.

Since the probability for a link to be ‘active’ decreases with a decreasing temperature, we
suggest that links are excluded with probability 1 − e−�E/T , where �E is the link’s barrier
energy. This way, for high T, all links remain and the network is connected, while for low
T many links are removed. We then measure (figure 6) the size of the largest and second
largest cluster (where we define a cluster as a set of nodes mutually accessible from each
other) for MLJ and BLJ. A percolation transition is evident at Tp = 0.26 ± 0.01 for MLJ and
Tp = 0.47 ± 0.01 for BLJ, indicating a second-order phase transition between a phase where
many configurations are available and a phase with a vanishing number of accessible states.

The percolation transition at Tp is expected to take place at the final stages of the glass
transition, when barriers become almost impossible to cross, and the system freezes in the
glassy state. Roughly speaking, the percolation transition temperature Tp could be associated
with the Kauzmann temperature TK . At TK , the configurational entropies of the glass and the
crystal are equal (had the glass transition not intervened), and therefore the system is bound to a
single, non-crystalline, ideal glass state [1, 2]. Similarly, at Tp, the system is bound to a region
of vanishing size of the phase space. In a sense, this region in phase space corresponds to the
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Figure 6. Percolation transition in Lennard-Jones energy landscape. (a) For MLJ system, we
plot the average size of the largest and second largest cluster after the removal of each link with
probability 1 − e−�E/T . Clusters are strongly connected (i.e., each node can be reached from
any other node in the cluster). The percolation transition takes place when the largest cluster size
vanishes and the second largest cluster is maximal. (b) Same as (a) for BLJ.

ideal glass state in which the system is found at the Kauzmann temperature TK . However, we
emphasize that this correspondence is merely descriptive and cannot be made more precise.

5. Discussion

The understanding of the nature of the glass transition is a formidable task, particularly since
molecular dynamics cannot approach low enough temperatures. Thus, simplified models
which capture the essential properties of the phenomena are of great value. Representation
of the multidimensional energy surface as a network is a particularly appealing approach,
due to recently developed network analysis tools. We applied this concept here, where we
studied Lennard-Jones clusters as networks of the stable basins and the links connecting them,
where each link is associated with an energy barrier. We showed that the network approach
qualitatively reproduces many properties of the glass transition. It is still not known whether
quantitative information, such as the precise values of Tg and other temperatures can also
be extracted from this kind of analysis. For that purpose, larger systems will have to be
considered. The similarity, in statistical terms, between the networks of n = 12 and n = 14
encourages us to believe that similar results, at least qualitatively, will be observed in larger
systems.

An alternative approach to circumvent the problem of the small system size is a
mathematical model which captures the main properties of the energy-landscape network.
A naive attempt would be to construct a ‘generalized trap model’ [27]. In a regular trap model
the configurations of the system are fully connected, in the sense that the system can jump
from any state to another. However, this is not sufficient to describe the slowing down of
the dynamics, since it allows transitions which do not exist in reality [28]. In a trap model
adapted to a network, each configuration is linked to precisely k other configurations, where
it is particularly interesting to consider the case of a power-law distribution of degrees which
is characteristic of LJ (section 2) and other systems [12]. To complete the description of
the model, one can assume the distribution of energy barriers is exponential with mean �E

(section 2). Despite the attractiveness of this simple approach, our analysis shows [29] that it
leads to counterintuitive results. For example, the distribution of time τ the system remains
in a configuration of degree k is a power law P(τ) ∼ τ−(1+kT /�E). Thus, according to model,
the typical time the system stays at nodes of high degree is small, whereas it is expected that
the system will spend long time at the hubs, since they are found at low potential energies
(section 2). Therefore, other approaches should be sought for.

8
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The advantage of the network approach is manifested in the application of percolation
theory, which provides a natural geometrical interpretation of the structural arrest taking place
at low temperatures [21]. We studied ‘bond percolation’, where we removed links in which
the barrier height was high relative to the temperature, to reveal a critical temperature where
the phase space breaks down into small isolated clusters. The study of glassy systems with the
network approach can be further extended. For example, ageing phenomena could be studied,
for either the real network or the model, by introducing more complex correlation functions.
Real-space properties such as diffusion coefficients and fluctuation–dissipation relations could
be studied by complementing the network with real-space information for each node. In
addition, similar analysis can be pursued to other systems with complex energy landscapes
such as proteins (e.g., [30]) or spin glasses [14].
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