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a b s t r a c t

We study the joint probability distribution of normal and tangential frictional forces in
jammed granular media, Pµ(ft , fn), for various values of the friction coefficient µ, espe-
cially when µ = ∞. A universal scaling law is found to collapse the data for µ = 0 to
∞, demonstrating a link between the force distribution Pµ(ft , fn) and the average coordi-
nation number, zµc . The results determine z

µ
c for a finite friction coefficient, extending the

constraint-counting argument of isostatic granular packing to finite frictional packings.
© 2010 Elsevier B.V. All rights reserved.

Granular matter undergoes a jamming transition evolving into an amorphous state with a non-zero yield stress as the
density increases to a point where all particles are in contact [1]. It has been shown experimentally and numerically that the
forces are inhomogeneously distributed within a jammed granular system, and they further appear to decay exponentially
or stretch exponentially for large values of the force [2–5]. To date, there have been various theoretical attempts to describe
the force distribution, predicting different behavior. For instance, lattice models and Boltzmann-equation approaches [5,6]
predict an exponential decay, and an attempt to describe correlations in force transmission was accomplished in [7].
Attempts to fit experimental data within the energy ensemble [8] predict stretched exponential behavior. But the results
are difficult to justify, since for granular matter energy is neither well defined nor conserved due to frictional forces [9]. An
alternative approach is to use the so-called force canonical ensemble with a Boltzmann distribution where the boundary
stress, not energy, is the conserved quantity [10–12]. Edwards’ theory suggests a canonical ensemble [10] over external
pressure, exp[−S − Π/A], where Π is the stress boundary, A = ∂Π/∂S is the angoricity, analogous to temperature in
equilibrium statistical mechanics, and S is the entropy. It is of interest to reduce the above-defined force ensemble to obtain
a single force distribution, but methods to accomplish this remain very difficult mainly due to the lack of knowledge on
the density of states [11] (which can be calculated numerically [13]). A crude approximation would ignore correlations
between forces and the contact network as well as the density of states, and would predict an exponential decay for the
force distribution [5,10].
Besides the force distribution and the density of states, an additional quantity of interest in this study is the average

coordination number, zµc , of a system at the jamming transition with interparticle friction coefficient µ. Despite the
importance of zµc for determining the packing stability, there is only one theoretical framework to characterize z

µ
c related

to the counting argument of the isostatic conjecture [14]. At the isostatic limit, the configuration of contact forces has a
unique solution if the contact network is given, since the number of independent forces is identical to the number of balance
equations. Previous works [4,15–20] have shown that packings at the jamming transition point are isostatic only for two
extreme cases, µ = 0 and µ = ∞, with average coordination number z0c = 2D and z

∞
c = D + 1 respectively, where

D is the number of dimensions. Recent studies [16] confirm that the indeterminacy of the force ensemble [17] reaches a
minimum at µ = 0 and∞. Other studies would argue that isostaticity is only well defined at the frictionless point and not
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Fig. 1. (a) and the inset are log–log plots of the PDF of u respectively in three dimensions and two dimensions for various values of µ; (b) log–log plot of

the collapsed Pµ(u) for various values ofµ in three dimensions. The red dashed lines in (a) and (b) are plots of P∞(u) = κ(D−1)
(1+κ2u2)3/2

(
κu√
1+κ2u2

)D−2
, where

we use κ = 3.80 and 3.43, respectively, for two dimensions and three dimensions from a direct measurement of the simulation.

at µ = ∞ [15]. Recent numerical studies in two dimensions show interesting power-law scaling approaching the isostatic
limit as a function of friction [19].
Lacking more definite theoretical approaches to understand the force distribution, the density of states and zµc for a

general µ, we perform a numerical study of the joint force distribution in frictional granular matter, Pµ(ft , fn). Here, the
forces at the contacts are normalized by the average forces: in the tangential direction ft = Ft

〈Ft 〉
and in the normal direction

fn = Fn
〈Fn〉
. We show that the key distribution is that of infiniteµ, interpreted in terms of the density of states and exponential

statistics, providing guidance to theoretical attempts under the statistical framework.We show a universal form of the force
ratio distribution Pµ(u), whereu is the ratio of normal and tangential force,u = Ft

Fn
, valid for allµ, and a scaling law is found to

collapse all the Pµ(u) determining z
µ
c for packings. By using Pµ(u)we introduce a way to calculate the average coordination

number for various values of µ based on the Maxwell construction of constraint arguments. Thus, we extend the isostatic
condition from the limits of µ = 0 and µ = ∞ to finite µ, providing the scaling of zµc , an unsolved nonlinear problem.
Our results provide a connection between two important quantities to describe jammed matter: from force distribution to
coordination number.
The packings we studied are composed of 10,000 equal-size spheres interacting with Hertz forces along the contact

direction, Fn, and Mindlin forces in the tangential direction, Ft , plus the Coulomb condition, Ft ≤ µFn [18]. We first generate
a gas state without friction at an initial volume fraction φi in a periodically repeated cubic box, then the packing is prepared
with friction through a slow compression and relaxation process to achieve equilibrium at a given volume fraction and
coordination number as close as possible to the limiting density of the jamming transition. The final macroscopic results
do not depend on the details of this initial preparation since the system is still below the jamming condition, retaining the
characteristics of a fluid. However, the ratio of normal to tangential interparticle force and its fluctuations strongly depend
on the way a packing is constructed, as shown in [21]. A detailed description of the simulation is given in [20], and the
computer code and packings are available at
We start by constructing an empirical formula for P∞(ft , fn) based on two numerical results.
(i) We find that the ratio force distribution [2,4,18,19],

Pµ(u) = κ
∫
∞

0
fnPµ(κufn, fn)dfn, (1)

at infinite friction is characterized by two power lawswith exponents equal to 0 and−3 in two dimensions, and 1 and−3 in
three dimensions, respectively, at u→ 0 and u→∞, where κ = 〈Fn〉

〈Ft 〉
is an anisotropy parameter. Fig. 1(a) plots Pµ(u) for

various values of µ, showing that all Pµ(u) display similar behavior, having two power-law slopes except for a sharp peak
at u = µ, due to sliding contacts reaching the Coulomb threshold. A correct form of force distribution should predict this
power-law behavior.
Notice that previous two-dimensional simulations [2,19] have reported a plateau of Pµ(u) in the region of [0, µ],

corresponding to the first power law of Pµ(u) with the exponent equal to 0, shown in the inset of Fig. 1(a). The second
power law only appears for very large values of µ and has not been reported by previous studies. We only show Pµ(u)
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Fig. 2. (a), (b) Contour plots of P∞(ft , fn) from simulation results in two dimensions and three dimensions, respectively; (c), (d) contour plots of the
empirical formula Eq. (2) with a = 0.8 in two dimensions and three dimensions, respectively; (e), (f) contour plots of P0.3(ft , fn) from simulation results in
two dimensions and three dimensions, respectively, with µ = 0.3. In (a), (b), (e) and (f), we superpose the data from 20 individual configurations; each of
them contains 10,000 grains.

with µ > 0.1 for two dimensions in the inset of Fig. 1(a) due to the difficulty of preparing disordered two-dimensional
monodisperse packing at small values of µ.
(ii) We find that the contour plot of P∞(ft , fn) follows the geometric behavior shown in Fig. 2(a) and (b), especially in

the three-dimensional case where P∞(ft , fn) is symmetric in the space of (ft , fn). We will show later on that this symmetric
behavior only occurs at large enough forces in three dimensions. A correct form of the force distribution should predict this
behavior.
By fitting our numerical data, we find an empirical form of P∞(ft , fn) for infinite friction, consistent with (i) and (ii). We

describe it by defining new variables f =
√
f 2t + f 2n and θ = arctan

(
ft
fn

)
:

P∞(f , θ) = ag(θ)e−
√
af , (2)

where a is a constant, which could be regarded as the inverse of the angoricity [10–12]. By fitting this distribution, we find

g(θ) = (D− 1)(sin θ)D−2 cos θ,

which can be regarded as the density of states approximately for the force ensemble at µ = ∞. Eq. (2), plotted in Fig. 2(c)
and (d), shows similar patterns to the simulation results of Fig. 2(a) and (b). We further study the contour plot of Pµ(ft , fn)
at µ = 0.3 shown in Fig. 2(e) and (f). P0.3(ft , fn) displays the same pattern inside the Coulomb cone as when µ = ∞.
We therefore suggest that the study of force distribution for frictional packing should focus on packings with µ = ∞.
The density of state g(θ) describes the probability of the contact forces for a single contact to have an angle θ [we note
that there is no obvious geometric meaning for θ , which is not the angle between the normal and the net contact force:
θ = arctan

(
ft
fn

)
= arctan

(
κ FtFt

)
6= arctan

(
Ft
Ft

)
] and indicates that the normal and tangential forces are correlated to each

other even when there is no Coulomb constraint.
We define P<(θ) as the cumulative probability distribution of θ indicating the probability of the contact forces for a single

contact to have an angle less than θ , such that g(θ) = dP<(θ)
dθ . We find that

P<(θ) = (sin θ)D−1. (3)

This simple form P< could lead to a theoretical approach to the force distribution since it provides the density of states
within the statistical mechanics framework [11,12].
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Fig. 3. (a) Log-linear plot of P∞(f , θ)/g(θ) for various values of θ in three dimensions. All the curves collapse well with a pure exponential tail in the
region of f > 1. The red dashed line is a function of ae−

√
af with a = 0.8. (b) Log-linear plot of P∞(ft ), P∞(fn) and P0(fn).

Eq. (2) implies that

P∞(f , θ)/g(θ) = ae−
√
af (4)

is independent of θ . We plot P∞(f , θ)/g(θ) for various values of θ in Fig. 3(a) to further comparewith the simulation results.
We find that all the curves collapse with exponential tails in the region of f > 1, indicating that the empirical form of Eq. (2)
captures the main features of the force distribution for large forces. P∞(f , θ)/g(θ) has a peak at f ' 1 when θ is small, and
exhibits a monotonic exponential decrease when θ is close to π

2 . This implies that the probabilities of single forces, P∞(fn)
and P∞(ft), have different behavior, as shown in Fig. 3(b): P∞(fn) displays a peak at f ' 1while P∞(ft) does not. This result is
consistent with previous experimental studies of frictional packings [22]. In Fig. 3(b) we plot the force distribution atµ = 0
and compare with that at µ = ∞. We conclude that P0(fn) has a stretched exponential tail that is close to Gaussian with a
exponent β = 1.65 due to local entropy maximization [23].
By using Eqs. (1) and (2), we obtain a ratio force distribution P∞(u), shown in Fig. 1 as a red dashed line, in good agreement

with numerical results. This result further confirms that our empirical formula Eq. (2) is reasonable.
Further, we show that the ratio distribution is the link between the ensemble of forces and the average coordination

number. We find that Pµ(u) can be rescaled to a single curve (except for the peak at µ), with scaling factors equal to λ and
λ2, for the y and x axes, respectively. We find λ = 1 in two dimensions and λ = (z0c − z

∞
c )/(z

0
c − z

µ
c ) in three dimensions,

as plotted in Fig. 1(b). In the two-dimensional case, Pµ(u) collapses without scaling, so λ = 1. The three-dimensional case
is different: we find that λ→ 1 when µ→∞, so P∞(u) does not change after multiplying the scaling factors. The factor λ
diverges at µ = 0, implying that Pµ(u) reduces to a delta function at µ = 0 due to the fact that all contact forces reach the
Coulomb threshold in a pure frictionless packing.
Next, we show that the universal form of P∞(u) determines z

µ
c for any µ, hereby extending the isostatic counting

argument from µ = 0 and µ = ∞ to finite values of µ. From linear counting arguments we know that z0c = 2D and
z∞c = D+ 1, and we want to interpolate to finite µ and obtain z

µ
c . Below, we show that the Maxwell constraint arguments

based on the number of redundant constraints provides the framework to derive zµc . Analysis of the coordination number
of granular packings can be related to the Maxwell constraint counting in rigidity percolation theory [24]:

F =
zD
2
N − Nc + Nr , (5)

where F is the number of degrees of freedom (or floppymodes) satisfying F ≥ 0,N is the number of grains,Nc is the number
of constraints, Nr is the number of redundant constraints, and z is the coordination number. At the jamming transition,
F = 0, resulting in a minimum value of z, i.e., zµc . Here zDN/2 is equal to the total number of unknown force variables for a
fixed force network.
We consider a static packing with both force and torque balances, but without any typical constraints of translation

and rotation. For packings with µ = ∞, the number of constraints, Nc , will be equal to the number of force balance
equations, DN , plus the number of torque balance equations, D(D − 1)N/2, i.e., Nc(∞) = D(D + 1)N/2. There exists
reasonable evidence [1,4,15–17,14,18–20] to believe that, at the jamming transition, Nr(∞) = 0, implying a conjecture
that the Maxwell counting approximation is exact. Therefore, z = z∞c = D + 1. Another important case is at µ = 0. Here
the number of redundant constraints, Nr(0) = D(D− 1)N/2, is equal to the number of torque balance equations due to the
absence of tangential force. Further, we must add z(D − 1)N/2 extra constraints to Nc(0), corresponding to equations of
tangential force equal to zero, Ft i = 0. Therefore, Nc(0) = Nc(∞)+ z(D− 1)N/2, and we obtain z = z0c = 2D.
Analyzing intermediate values of µ is complicated, since many inequality constraints are created as µFni − Ft i ≥ 0.

Calculating zµc becomes a nonlinear problem, which can be understood as an optimization of an outcome based on some
set of constraints, i.e., minimizing a Hamiltonian of the system, H(Fn, Ft), over a convex polyhedron specified by linear and
non-negativity constraints. An interesting feature found in previous studies is that zµc monotonically decreases from 2D to
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Fig. 4. zµ versus µ for various values of the initial volume fraction φi in three dimensions. The red solid line is the theoretical result predicted by Eq. (8).
In the inset, the red dashed and dashed–dotted lines are the prediction of (z0 − zµ)/2 and (zµ − z∞)/2, respectively, in comparison with simulations.

D + 1 with increasing µ [4,16,19,20], implying that we can map this nonlinear problem to a linear one by considering a
monotonic change in the number of constraints in Eq. (5) with increasing µ.
The above analysis suggests extending the Maxwell counting argument Eq. (5) to a system with finite µ as

F =
zµc D
2
N − Nc(∞)+

[
Nr(0)− zµc (D− 1)N/2

]
η(µ) = 0, (6)

where η(µ) is an undetermined monotonic function ranging from 1 to 0 as µ ranges from 0 to∞. The problem is reduced
to choosing a functional form for η(µ).
To determine η(µ), we notice that it should be related to the sliding rate of packings, i.e., the ratio of the number of

the sliding contacts to the number of total contacts in a packing, denoted S(µ). By definition, S(µ) is determined by Pµ(u),
providing a link between the coordination number and the force distribution:

S(µ) = 1−
∫
0

µ

Pµ(u)du = 1−
∫
0

µ

λ2P∞(λu)du. (7)

The limiting cases are S(0) = 1 and S(∞) = 0, and S(µ) has the same monotonic behavior as η(µ).
While η(µ)must be a function of S(µ), there are many choices for the functional relation between both quantities. We

determine this functional form by fitting the simulations. Setting η(µ) = 1− (1− S(µ))/λ provides very good fitting of zµc
with simulations in both two dimensions and three dimensions. Substituting η(µ) into Eq. (6), we arrive at a cubic equation
for zµc in three dimensions:

1
κ2µ2

(
6− zµc
2

)3
+ 3

(
6− zµc
2

)
− 3 = 0. (8)

It can be shown that Eq. (8) predicts two power-law relations, z0c −z
µ
c ∼ µ

α , and zµc −z∞c ∼ µ
−β , respectively, forµ→ 0

and µ→∞, where α = 2/3 and β = 2. In Fig. 4 we plot zµc obtained from the cubic Eq. (8) and compare with simulation
data in three dimensions. The asymptotic predictions of α = 2/3 and β = 2 are in good agreement with the simulation
results shown in the inset of Fig. 4. It is difficult to check the value of β due to the difficulty of preparing a three-dimensional
packing as close as possible to z∞c = 4. To solve this problem, we prepare larger packings slightly above the critical point
with a small constant pressure, and zµc is replaced by zµ without suffix. This result is shown in Fig. 4 with two sets of data
for pressure σ = 500 kPa and σ = 1500 kPa. We can see that the power law of the coordination number is independent of
the pressure even when zµ is far from the isostatic value.
Whenwe combine the power-law finding of zµc with our theoretical work in [20] in three dimensions, where z

µ
c is linked

to the volume fraction φµc with a simple formula,

φµc = z
µ
c /
(
zµc + 2

√
3
)
, (9)

then we solve the relation between φµc , z
µ
c and µ; φ

µ
c follows the same scaling behavior with µ, φ0c − φ

µ
c ∼ µα , and

φ
µ
c −φ

∞
c ∼ µ

−β . Recent experiments [25] in three dimensions investigated the preparation of packings close to the random
loose packing limit. They found α = 0.51 ± 0.25 and β = 0.89 ± 0.16. Their measurement of β is far away from our
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prediction, which could be due to the same problem that we find in our packings: the difficulty of preparing packings as
close as possible to z∞c = 4.
In the two-dimensional case, η(µ) = S(µ) since λ = 1, and we have

zµc =
[
4+

2κµ
(1+ κ2µ2)1/2

]/[
1+

κµ

(1+ κ2µ2)1/2

]
. (10)

This equation predicts α = 1 and β = 2, close to our simulation result of β = 1.86. We cannot determine the value of
α from simulation due to the difficulty of preparing disordered two-dimensional monodisperse packings for small values
of µ, and the polydispersity of packings may slightly affect these two indices. Previous simulations [19] of polydisperse
two-dimensional packings have α = 0.7, still close to our predictions.
In summary, we have developed a framework to study the connection between the force distribution and the

coordination number. Some aspects of this connection remain empirical, including the density of states, g(θ), and the scaling
factor λ, allowing for the collapse of Pµ(u) into a single curve. Overall, the obtained mathematical forms of the density of
states, the different force distributions, the coordination number and the volume fraction may allow for their incorporation
into a statistical force ensemble of jammed matter [11,12]. This may facilitate the solution of outstanding open problems
such as the prediction of the power-law scaling of the pressure, the coordination number and elasticmoduli with the volume
fraction near the jamming transition [1].
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