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I. NOTATION

1. Member j sends his/her nth message at time tj(n), where 1 ≤ n ≤ Mj and Mj is the

total number of messages sent by j in the time of data acquisition T . The sequence

of counts defined as the number of messages in the period δt, is given by

µδt
j (t) =

∑

n,tj(n)∈[t,t+δt]

aj(n) , (1)

where aj(n) = 1. In addition, the periods are non-overlapping, t = iδt with integer i,

and therefore 1 ≤ tj(n) ≤ T . In the case of daily resolution δt = 1 day.

2. The cumulative number of messages that a member sends until time t is:

mδt
j (t) =

t
∑

t′=1

µδt
j (t′) . (2)

In particular, mj(1) = µj(1) and mj(T ) = Mj .

3. The displacement of the random walk is the cumulative sum of the normalized µδt
j (t):

Y δt
j (t) =

t
∑

t′=1

(µδt
j (t′) − 〈µδt

j (t)〉) , (3)

where 〈µδt
j (t)〉 is the average of µδt

j (t) in time t. The root-mean-square displacement

after ∆t is defined as

F δt
j (∆t) =

√

〈[Y δt
j (t + ∆t) − Y δt

j (t)]2〉
t
, (4)

where the average is performed over the time t. Additionally, we perform an average

over members j with activity level M and define

(F δt(∆t))2
M = 〈(F δt

j )2|M〉j . (5)
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FIG. 1: Optimal times t0 and t1. The panels show for a, OC1, and b, OC2, the number of members

with both, m0 > 0 and m1 − m0 > 0. While t1 obviously is optimal at the end of the period, t0 is

varied to find the value for which the number of members – with at least one message until t0 and

at least one new message between t0 and t1 – is maximal.

4. For simplicity, in the main text we skip the index j as well as δt and write µ(t), m(t),

Y (t), as well as F (∆t).

5. To investigate the growth in the number of messages we use the quantities r = ln m1

m0
,

〈r(m0)〉, σ(m0) and the exponents βOC1, βOC2, βG, βrnd.

6. To investigate the growth of the degree we use the quantities rk = ln k1

k0
, 〈rk(k0)〉,

σk(k0) and the exponents βk,OC1; βk,OC2.

7. For the growth of the degree in the preferential attachment model we use the quantities

rPA = ln k1

k0
, 〈rPA(k0)〉, σPA(k0) and the exponent βPA.

more???

II. OPTIMAL TIMES t0 AND t1

Figure 1 displays the optimal times t0 and t1 to calculate the growth rates for OC1

(panel a) and OC2 (panel b).
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III. DETAILS ON THE QUANTIFICATION OF LONG-TERM CORRELATIONS

USING DETRENDED FLUCTUATION ANALYSIS

Statistical dependencies between the values of a record µ(t) with t = 1, . . . , T can be

characterized by the auto-correlation function

C(∆t) =
1

σ2
µ(T − ∆t)

T−∆t
∑

t=1

[µ(t) − 〈µ(t)〉] [µ(t + ∆t) − 〈µ(t)〉] , (6)

where T is the length of the record µ(t), 〈µ(t)〉 its average, and σµ its standard deviation.

For uncorrelated values of µ(t), C(∆t) is zero for ∆t > 0, because on average positive

and negative products will cancel each other out. In the case of short-term correlations

C(∆t) has a characteristic decay time ∆t×. A prominent example is the exponential decay

C(∆t) ∼ exp(−∆t/∆t×). Long-term correlations are described by a slower decay, e.g.

diverging ∆t×, namely a power-law,

C(∆t) ∼ (∆t)−γ , (7)

with the correlation exponent 0 < γ < 1.

Detrended Fluctuation Analysis (DFA) is a well studied method to quantify long-term

correlations in the presence of non-stationarities [1]. The analysis of a considered record

µ(t) of length T consists of 5 steps:

1. Calculate the cumulative sum, the so-called profile:

Y (t) =
t

∑

t′=1

(µ(t′) − 〈µ(t)〉) . (8)

2. Separate the profile Y (t) into T∆t = int T
∆t

segments of length ∆t. Often, the length

of the record is not a multiple of ∆t. In order not to disregard information, the

segmentation procedure is repeated starting from the end of the record and one obtains

2T∆t segments.

3. Locally detrend each segment ν by determining best polynomial fits p
(n)
ν (t) of order n

and subsequently subtract it from the profile:

Y∆t(t) = Y (t) − p(n)
ν (t) . (9)
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4. Calculate for each segment the variance (squared residuals) of the detrended Y∆t(t)

F 2
∆t(ν) =

1

∆t

∆t
∑

j=1

(

Y 2
∆t [(ν − 1)∆t + j]

)

(10)

by averaging over all values in the corresponding νth segment.

5. The DFA fluctuation function is given by the square-root of the average over all seg-

ments:

F (∆t) =

[

1

2T∆t

2T∆t
∑

ν=1

F 2
∆t(ν)

]1/2

. (11)

The averaging of F 2
∆t(ν) is additionally performed over members of similar activity

level M .

If the record µ(t) is long-term correlated according to a power-law decaying auto-

correlation function, Eq. (7), then F (∆t) increases for large scales ∆t also as a power-law:

F (∆t) ∼ (∆t)H , (12)

where the fluctuation exponent H is analogous to the well-known Hurst exponent [2]. The

exponents are related via

H = 1 − γ/2 , γ = 2 − 2H . (13)

When γ = 1 then Hrnd = 1/2, that is the case of uncorrelated dynamics. If the correlations

decay faster than γ > 1 then the random exponent Hrnd = 1/2 is still recovered. Long-term

correlations imply 0 < γ < 1 and 1/2 < H < 1. In practice, one plots F (∆t) versus ∆t in

double-logarithmic representation, determines the exponent H on large scales and quantifies

the correlation exponent γ. The order of the polynomials p
(n)
ν determines the detrending

technique which is named DFAn, DFA0 for constant detrend, DFA1 for linear, DFA2 for

parabolic, etc.

The subtraction of the average in Eq. (8) is only necessary for DFA0. By definition

the corresponding fluctuation function is only given for ∆t ≥ n + 2. The detrending order

determines the capability of detrending. Since the local trends are subtracted from the

profile, only trends of order n− 1 are subtracted from the original record µ(t). Throughout

the paper we show the results using DFA2 which we found to be sufficient in terms of

detrending.
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FIG. 2: Growth properties of the preferential attachment model [3] discussed in the main text.

We plot the average (black circles) and standard deviation (blue squares) of the growth rate rPA

conditional to k0, the degree of the corresponding nodes at the first stage.

Since the fluctuation functions F (∆t) for single users are very noisy, it is useful to average

fluctuation functions among various members. Thus, we first group the members in loga-

rithmic bins according to their activity level, the total number of messages M sent. Namely,

we group all members that send 1-2, 3-7, 8-20, . . .messages in the period of data acquisition

by using bins determined by b = int (ln M). Next we average the fluctuation function among

all members from each group b and obtain for every activity level of the members one DFA

fluctuation function. The error bars in Fig. 3a,c of the main text were obtained by subdivid-

ing each group and determining the standard deviations of the fluctuation exponents from

different groups of the same activity level.

IV. GROWTH IN THE DEGREE

Figure 2 shows the results of the average growth rates and fluctuations of the growth

rates as a function of the initial degree for the preferential attachment model [3]. We find

a constant average growth rate and a standard deviation decreasing as a power law with

exponent βPA = 1/2 in Eq. (7) in the main text.

The PA network model has been described analytically. In particular, it has
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been shown that each nodes’ degree increases as

k(t) ∼

(

t

t∗

)b

, (14)

where t∗ is the time when the corresponding node was introduced to the system

and b is the dynamics exponent in growing network models (b = 1/2 for the

standard PA) [4]. Accordingly, here the growth rate, Eq. (6) in the main text,

is rPA = 1
2
ln t1

t0
, which we also find in Fig. 2.

To obtain σPA(k0) one can use analogous considerations as for σ(m0) in the

main text. Due to Eq. (6) in the main text, here we have

rPA ≈
1

k0

∆t
∑

t=1

κ(t) , (15)

where κ(t) are small increments analogous to µ(t), whereas Eq. (14) implies

κ(t) ∼ (∆t)−1/2 . (16)

As before, the conditional standard deviation of the growth rate is

〈[rPA(k0) − 〈rPA(k0)〉]
2〉 ≈

1

k2
0

∆t
∑

i

∆t
∑

j

σ2
κC(j − i) . (17)

In the uncorrelated case C(j− i) = δij, the double sum can be reduced to a single

one:

σ2
PA(k0) =

1

k2
0

∆t
∑

i

σ2
κ(i) . (18)

As shown below, σκ(i) ∼ i−1/4, and integration leads to

σ2
PA(k0) ∼

1

k2
0

∫ ∆t

i−1/2di (19)

∼
1

k2
0

(∆t)1/2 . (20)

Eliminating ∆t using k ∼ t−1/2, Eq. (14), one obtains

σPA(k0) ∼ k
−1/2
0 . (21)

Remains to show σκ(t) ∼ t−1/4. We assume new links are set according to a

Poisson process, whereas every new link of a node represents an event. The in-

tervals between these events (asymptotically) follow an exponential distribution
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p(τ) = λe−λτ . Accordingly, κ(t) is a sequence of zeros and only one when a new

link is set to the corresponding node. The standard deviation of this sequence

is

σκ ∼ λ1/2 . (22)

Due to Eq. (14) the rate parameter decreases like

λ(t) ∼ t−1/2 . (23)

Accordingly,

σκ(t) ∼ t−1/4 . (24)

In order to extend the standard PA model, a fitness model has been intro-

duced [5] taking into account different fitnesses of the nodes of acquiring links

and therefore involving a distribution of b-exponents. The spread of growth

rates r could be related to the distribution of fitness. On the other hand, the

growth according to Eq. (14) is superimposed with random fluctuations that we

characterize with the exponent β.
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