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A model of interdependent networks of networks (NONs) was introduced recently [Proc. Natl. Acad. Sci.
(USA) 114, 3849 (2017)] in the context of brain activation to identify the neural collective influencers in the
brain NON. Here we investigate the emergence of robustness in such a model, and we develop an approach to
derive an exact expression for the random percolation transition in Erdös-Rényi NONs of this kind. Analytical
calculations are in agreement with numerical simulations, and highlight the robustness of the NON against
random node failures, which thus presents a new robust universality class of NONs. The key aspect of this
robust NON model is that a node can be activated even if it does not belong to the giant mutually connected
component, thus allowing the NON to be built from below the percolation threshold, which is not possible in
previous models of interdependent networks. Interestingly, the phase diagram of the model unveils particular
patterns of interconnectivity for which the NON is most vulnerable, thereby marking the boundary above which
the robustness of the system improves with increasing dependency connections.
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I. INTRODUCTION

Many biological, social, and technological systems are
composed of multiple, if not vast numbers of, interacting
elements. In a stylized representation, each element is por-
trayed as a node and the interactions among nodes as mutual
links, thus forming what is called a network [1]. A finer
description further isolates several subnetworks, each of them
performing a different function. These subnetworks are, in
turn, integrated to form a larger aggregate referred to as a
network of networks (NON). A compelling problem is how to
define the interdependencies between networks, specifically
how the functioning of nodes in one network controls the
functioning of nodes in other networks [2–6].

Current models of interdependent NONs inspired by the
power grid represent such dependencies across networks
through prohibitively fragile couplings [2,3], such that the
random failure of few nodes gives rise to a catastrophic
cascading collapse of the entire NON. The reason for such
a catastrophic vulnerability lies in a global rule of intercon-
nectivity between networks: nodes are activated only when
they are part of the mutually connected giant component.
Thus, a single node has to carry the information about the
entire extensive giant component, and small isolated activated
clusters are not allowed as the node’s activity depends globally
on the connectivity of the whole NON. This global dependency
for functionality in the network leads to discontinuous sudden
transitions from a connected phase to a disconnected phase,
which is, however, not reversible, i.e., the NON cannot be built
from below the percolation transition.

Many real-life systems, however, exhibit high resilience
against malfunctioning. The prototypical example of such
robust modular architectures is the brain, which thus cannot
fit in catastrophic NON models [6]. To overcome the fragility
of current NON models, we recently introduced a model of
interdependencies in NONs in which dependency or control
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links do not need to be part of the global giant connected
component G for their proper functioning [7]. Our model
is inspired by the phenomenon of top-down control in brain
activation between neural networks connected by weak links
[8–10]. The key point in our model is that a node can be
activated even if it does not belong to G. We thus separate
the (local) notion of activity from the (global) concept of the
giant connected component, allowing us to build the NON
from below the percolation threshold, which is not possible in
previous models of interdependent networks [2,3]. As a result,
dependencies, which are now called controlling links in the
robust NON, do not lead to cascades of failures, and the robust
model exhibits second-order transitions at the percolation
threshold. Interestingly, similar ideas have been put forward
in a NON model in Ref. [11].

We initially [7] studied the impact of rare events, i.e.,
nonrandom optimal percolation [12], on this NON, allowing
us to identify the neural collective influencers (NCIs) in the
brain [7], with application to neurological disorders. These
NCIs are the minimal number of nodes in the NON, that
upon removal lead to the destruction of the mutually giant
connected component, which is a generalization of the optimal
percolation process presented in [12,13] from single networks
to NONs.

Here we investigate the robustness of this NON model
with respect to typical node failures, i.e., random percolation.
More precisely, we develop an approach to derive an ana-
lytical expression for the random percolation phase diagram
in Erdös-Rényi (ER) NONs and ER multiplex networks.
Our calculations unveil the conditions responsible for the
emergence of robustness, and predict the critical fraction of
interdependencies above which the system becomes more
robust with an increase in dependency connections, thus
presenting a new robust universality class.

II. DEFINITION OF CONTROL LINKS

Consider N nodes in a NON composed of several in-
terdependent modules (Fig. 1). We distinguish the roles
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FIG. 1. Robust interdependent 2-NON. Intramodule links (black)
represent connectivity, while intermodule links (wiggly blue lines)
express mutual control. The occupation variable ni specifies whether
a node is present (ni = 1; indicated by an −→ to guide the eye) or
removed (ni = 0; no arrow). The activation state σi , defined through
intermodule control links, indicates whether a node is activated (σi =
1; ) or inactivated (σi = 0; ◦ and •). Nodes can be activated even if
they do not belong to the giant connected activated component G, and
control links do not need to be part of G for their proper functioning
[see, for instance, the topmost pair of nodes in (b)]. A node can be part
of G without being part of the largest connected activated component
in its own module [consider, for instance, the top-left node in (a)].
Legend: σi = 1; • ni = 1,σi = 0; ◦ ni = 0,σi = 0.

of intramodule connectivity links, connecting nodes within
a module, and intermodule control or dependency links,
connecting nodes across modules: while the former only
represent whether or not two nodes are connected, the latter
additionally express mutual control. Every node i has kconn

i

connectivity links and kctr
i control connections, respectively

referred to as node i’s connectivity-degree and control-degree.
Each node can be present or removed, and, if present,

it can be activated or inactivated. We introduce the binary
occupation variable ni = 1,0 to specify whether node i is
present (ni = 1) or removed (ni = 0). By virtue of intermodule
control or dependency connections, the functioning of a node
in one module controls or depends on the functioning of nodes
in other modules. To conceptualize this form of control, we
introduce the activation state σi , taking values σi = 1 if node
i is activated and σi = 0 if not. A node i with one or more
intermodule control links (kctr

i � 1) is activated (σi = 1) if
and only if it is present (ni = 1) and at least one of its
intermodule neighbors j is also present (nj = 1), otherwise
it is not activated (σi = 0). In other words, a node with one or
several intermodule dependencies is inactivated when the last
of its intermodule neighbors is removed.

The rationale for this control rule is that the activation (σi =
σj = 1) of two nodes connected by, for instance, one interlink
occurs only when both nodes are occupied (ni = nj = 1). If
just one of them is unoccupied, say nj = 0, then both nodes
become inactive. Thus, σi = 0 even though ni = 1, and we say
that j exerts a control over i. This rule models the way neurons
control the activation of other neurons in distant brain modules
(via fibers through the white matter) in a process known as top-
down influence in sensory processing [10]. Mathematically, σi

is defined as

σi = ni

⎡
⎣1 −

∏
j∈F(i)

(1 − nj )

⎤
⎦ for kctr

i � 1, (1)

whereF(i) denotes the set of nodes connected to i via a control
link. Conceptually, the control links define a mapping from the
configuration of occupation variables �n ≡ (n1, . . . ,nN ) to the
configuration of activated states �σ ≡ (σ1, . . . ,σN ), as given by
Eq. (1).

Not all nodes participate in the control of other nodes via
dependencies, however, i.e., a certain fraction of them does
not establish intermodule control connections. If a node does
not have intermodule links, it activates as long as it is present:

σi = ni for kctr
i = 0. (2)

This property also guarantees that we recover the single-
network case for vanishing intermodule connections (〈kctr

i 〉 =
0), i.e., when considering the limiting case of one isolated
module only.

The above control rule can alternatively be expressed by
the McCulloch-Pitts model of neural activation [14]:

σi = 0 for direct inactivation, (3)

σi = �

⎛
⎝ ∑

j∈F(i)

σj

⎞
⎠ for indirect inactivation, (4)

where a node can be inactivated directly (in which case we set
σi = 0) or it can be inactivated indirectly as a result of a lack of
input from its inactivated neighbors. The sum over F(i) in the
second equation reflects the integration of incoming activity
from nodes j in other modules connected to node i via control
links. The threshold operation via the Heaviside step function
� indicates that a minimum of incoming activity is needed for
activation to propagate.

When a fraction of nodes is removed, the NON breaks
into isolated components of activated nodes. In this work,
we focus on the largest (giant) mutually connected activated
component G, which encodes global properties of the system.
In contrast to previous NON models [2,3], in our model a node
can be activated even if it does not belong to G (see Fig. 1).
Indeed, the activation of a node, given by Eq. (1), is not tied
to its membership in the giant component. Therefore, a node
can be part of G without being part of the largest connected
activated component in its own module [consider, for instance,
the top left node in Fig. 1(a)]. As a consequence, controlling
dependencies in the NON do not lead to cascades of failures,
which ultimately explains the robustness of our NON model.
In the model of Refs. [2,3], on the other hand, a node can be
activated (therein termed “functional”) if and only if it belongs
to the largest connected component of its own module, and
(for the case when it has intermodule dependency links) its
intermodule neighbors also belong to the giant component
within their module. Indeed, in Refs. [2,3] the propagation of
failures is not local as in Eq. (1), implying that the failure of a
single node may catastrophically destroy the NON.

To quantify the robustness of our NON, we measure the
impact of node failures ni = 0 on the size of G [2–4].
More precisely, we calculate G under random configurations
�n, sampled from a flat distribution with a given fraction
q ≡ 1 − ∑N

i=1 ni/N of removed nodes, and we show that
G remains sizable even for high values of q. In practice,
starting from q = 0, we compute G(q) while progressively
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FIG. 2. Percolation transition. Fraction of nodes in G (black dots)
and 200 ∗ size of the second largest connected activated component
(red dots) as a function of q for an ER 2-NON with 〈kconn〉 = 4,
〈kctr〉 = 2, and N = 2 × 106. The percolation threshold qc denotes
the critical fraction of randomly removed nodes at which G(qc) = 0
collapses. The numerical value qnum

c = 0.788 is obtained at the peak of
the second largest activated component. The percolation transition,
separating the phases G > 0 and G = 0, is of second order in the
robust NON.

increasing the fraction q of randomly removed nodes. The
robustness of the NON is then formally characterized by the
critical fraction qc, the percolation threshold, at which the giant
connected activated component collapses, G(qc) = 0 [2,3].
Consequently, NON models with high qc (ideally close to 1)
are robust, whereas those with low qc are considered fragile.
A plot of G(q) for an ER 2-NON is shown in Fig. 2.

III. MESSAGE PASSING

From a practitioner’s point of view, the size of G in
a particular NON realization can be computed using a
breadth-first search strategy [1], which consecutively identifies
activated neighbors (and neighbors of neighbors, etc.) until all
nodes have been assigned the label of the corresponding cluster
to which they belong.

In the limit of large network size (N → ∞), the problem
of calculating G can also be solved using a message-passing
approach [4,12,15], which provides exact solutions on a locally
treelike NON, containing a small number of short loops [15].
This includes the thermodynamic limit of Erdös-Rényi and
scale-free random graphs as well as the configuration model
(the maximally random graphs generated from a given degree
distribution), which contain loops whose typical length grows
logarithmically with the system size [16].

The virtue of the message-passing approach lies in the fact
that it allows us to make statements about the typical per-
colation behavior of large networks through the computation
of ensemble averages, i.e., by averaging the message-passing
equations over all realizations of randomness inherent in the
percolation process [15].

In principle, message passing works like this: each node
receives messages from its neighbors containing information
about their membership in G. Based on what they receive, the
nodes then send further messages until everyone eventually

agrees on who belongs to G. In practice, we need to derive
a self-consistent system of equations that specifies for each
node how the message to be sent is computed from the
incoming messages [17]. To that end, we introduce two types
of messages: ρi→j running along an intramodule connectivity
link and ϕi→j running along an intermodule control link.
Formally, we denote ρi→j ≡ probability that node i is
connected to G other than via intramodule neighbor j , and
ϕi→j ≡ probability that node i is connected to G other than via
intermodule neighbor j . The binary nature of the occupation
variables and the activation states constrains the messages to
take values ρi→j ,ϕi→j ∈ {0,1}.

The self-consistent system of message-passing equations
corresponding to our model can then be derived as follows.
A node can only send nonzero information if it is activated,
hence the messages must be proportional to σi . Assuming node
i is activated, it can send a nonzero intramodule message ρi→j

to node j if and only if it receives a nonzero message by at
least one of its intramodule neighbors other than j or one
of its intermodule neighbors. Similarly, we can consider the
message ϕi→j along an intermodule link. Assuming node i is
activated, it can send a nonzero message to node j if it receives
a nonzero message by at least one of its intramodule neighbors
or one of its intermodule neighbors other than j . Thus, the
self-consistent system of message-passing equations is given
by

ρi→j = σi

⎡
⎣1 −

∏
k∈S(i)\j

(1 − ρk→i)
∏

k∈F(i)

(1 − ϕk→i)

⎤
⎦, (5)

ϕi→j = σi

⎡
⎣1 −

∏
k∈S(i)

(1 − ρk→i)
∏

k∈F(i)\j
(1 − ϕk→i)

⎤
⎦, (6)

where S(i) denotes the set of node i’s intramodule nearest
neighbors, and F(i) denotes the set of i’s intermodule nearest
neighbors. Note that products over empty sets S(i) = ∅ or
F(i) = ∅ default to 1.

In practice, the message-passing equations are solved
iteratively. Starting from a random initial configuration
ρi→j ,ϕi→j ∈ {0,1}, the messages are repeatedly updated until
they finally converge. From the converged solutions for the
messages, we can then compute the marginal probability
ρi = 0,1 for each node i to belong to the giant connected
activated component G:

ρi = σi

⎡
⎣1 −

∏
k∈S(i)

(1 − ρk→i)
∏

k∈F(i)

(1 − ϕk→i)

⎤
⎦. (7)

The size of G, or rather the fraction of nodes belonging to
G, can then simply be computed by summing the probability
marginals ρi and dividing by the system size:

G(�n) = 1

N

N∑
i=1

ρi. (8)

IV. PERCOLATION PHASE DIAGRAM

In what follows, we derive an exact expression for the
percolation threshold in Erdös-Rényi 2-NONs, defined as two
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randomly interconnected ER modules. Each module is an ER
random graph with Poisson degree distribution,

Pz[k
conn = k] = e−zzk /k! for k ∈ N0, (9)

where z ≡ 〈kconn〉 denotes the average connectivity-degree.
Similarly, we consider the inter-module links to form a
bipartite ER random graph with Poisson degree distribution,

Pw[kctr = k] = e−wwk/k! for k ∈ N0, (10)

where w ≡ 〈kctr〉 denotes the average control-degree. The
corresponding distributions for the connectivity- or control-
degree of the node at the end of a randomly chosen intra- or
interlink are given by

Qz[k
conn = k] = kPz[k

conn = k]/z,

Qw[kctr = k] = kPw[kctr = k]/w (11)

for k ∈ N+.
The random percolation process is then defined by remov-

ing each node in the NON independently with probability q,
which is equivalently formulated as taking the configurations
�n = (n1, . . . ,nN ) at random from the following product of
Bernoulli distributions:

Pp[�n] =
N∏

i=1

pni (1 − p)1−ni , (12)

where p = 1 − q denotes the occupation probability.
We thus take a slightly different yet mathematically

equivalent perspective on the percolation process here: instead
of randomly removing a fixed number qN of nodes, we
consider configurations in which each node is independently
removed with probability q. In the thermodynamic limit of
large network size, both approaches are equivalent, as the
distribution of configurations Pp[�n] is highly peaked around
configurations �n with qN removed nodes.

The probability Pp[σi = 1|kctr
i = k] that a node with

control-degree kctr
i = k is activated when a randomly chosen

fraction p of nodes in the NON is present can readily be
obtained from the corresponding expectation 〈σi〉�n, which is
given by averaging the activation state σi in Eq. (1) over the
distribution of configurations Pp[�n]:

〈σi〉�n = p 1{kctr
i =0} + p[1 − (1 − p)k

ctr
i ]1{kctr

i >0}, (13)

where 1{·} denotes the indicator function. The expected
fraction of activated nodes in the NON 〈σi〉�n, kctr

i
is furthermore

given by averaging 〈σi〉�n over the control-degree distribution
Pw[kctr

i = k]:

〈σi〉�n, kctr
i

= p[1 + e−w − e−wp]. (14)

Unlike a node’s probability to be occupied, Pp[ni =
1|kctr

i = k] = Pp[ni = 1] = 〈ni〉�n = p, the probability that a
node with control-degree kctr

i = k is activated,

Pp[σi = 1|kctr
i = k] =

{
p, k = 0,

p[1 − (1 − p)k ], k > 0,
(15)

is therefore highly dependent on the node’s control degree kctr
i .

In other words, the deactivations (σi = 1 → σi = 0) are highly
degree-dependent, even if the fraction q of nodes to be removed
from the NON (ni = 1 → ni = 0) is chosen randomly.

To compute the expectation of messages within the en-
semble of ER 2-NONs, we average the expressions for
ρi→j and ϕi→j , representing the converged solutions to the
message-passing equations, over all possible realizations of
randomness inherent in the above distributions (9)–(12). In
doing so, however, we must make sure to properly account
for the fact that, for nodes i with control links (kctr

i � 1),
the binary occupation variable ni shows up more than once
within the entire system of message-passing equations, due
to the activation rule for σi . Indeed, since the occupation
variable is a binary number ni ∈ {0,1}, powers of nk

i = ni

for each exponent k ∈ N+ and therefore the self-consistency
is not affected by the existence of multiple ni per node. Yet,
when naively averaging with the distribution of configurations,

we would incorrectly obtain nk
i

Pp−→ pk instead of nk
i

Pp−→ p,
without properly accounting for the binary nature of the
occupation variable across the entire system of message-
passing equations.

More precisely, when inserting the expression for the
message ϕk→i , determined by Eq. (6), into the expression
for ρi→j , given by Eq. (5), the activation state σk = nk[1 −
(1 − ni)

∏
�∈F(k)\i(1 − n�)] (within ϕk→i) reduces to nk , since

ni(1 − ni) = 0 for binomial variables. In other words, we need
to replace σk with nk within the expression for ϕk→i [and
analogously replace σi with ni in Eq. (6)] when computing
expectations.

Thus, the modified message-passing equations we need to
average read

ρi→j = σi

⎡
⎣1 −

∏
k∈S(i)\j

(1 − ρk→i)
∏

k∈F(i)

(1 − ϕk→i)

⎤
⎦,

ϕi→j = ni

⎡
⎣1 −

∏
k∈S(i)

(1 − ρk→i)
∏

k∈F(i)\j
(1 − ϕk→i)

⎤
⎦.

(16)

In practice, we expand ρi→j , given by Eq. (16), and perform
the averaging separately for each term:

ρi→j = ni

⎡
⎣1 −

∏
k∈S(i)\j

(1 − ρk→i)

⎤
⎦1{kctr

i =0}

+ σi

⎡
⎣1−

∏
k∈S(i)\j

(1 − ρk→i)
∏

k∈F(i)

(1−ϕk→i)

⎤
⎦1{kctr

i >0}.

(17)

The only nontrivial expectation involves the following expres-
sion: 〈

σi

∏
k∈S(i)\j

(1 − ρk→i)
∏

k∈F(i)

(1 − ϕk→i)1{kctr
i >0}

〉

=
〈
ni

∏
k∈S(i)\j

(1 − ρk→i)

[ ∏
k∈F(i)

(1 − ϕk→i)

−
∏

k∈F(i)

(1 − nk)(1 − ϕk→i)

]
1{kctr

i >0}

〉
, (18)
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where we have to account for the fact that (1 − nk)(1 −
ϕk→i) = (1 − nk). The final expression for the average in-
tramodule message ρ reads

ρ = p[1 + e−w − e−wp − e−zρ−w + e−zρ−wp − e−zρ−wϕ].

(19)

Averaging the modified interlink message ϕi→j , given by
Eq. (16), over all possible realizations of randomness inherent
in the percolation process yields

ϕ = p[1 − e−z ρ −w ϕ]. (20)

The percolation threshold pc = 1 − qc of the ER 2-NON
can now be found by evaluating the leading eigenvalue
determining the stability of the fixed-point solution {ρ = ϕ =
0} to the averaged modified message-passing equations [15]:(

∂ρ

∂ρ

∂ϕ

∂ρ
∂ρ

∂ϕ

∂ϕ

∂ϕ

)∣∣∣∣
{ρ=ϕ=0}

=
(

pz[1 + e−w − e−wp] pz

pw pw

)
.

(21)

The corresponding eigenvalues can readily be obtained as

λ± = p

2

[
z[1 + h] + w

±
√

z2[1 + h]2 + 2zw[1 − h] + w2
]
, (22)

where we define h(p) ≡ e−w − e−wp. Formally, the fixed-
point solution {ρ = ϕ = 0} is stable if and only if λ+ � 1
[12,15]. The implicit function theorem then allows us to
obtain the percolation threshold pc = 1 − qc by saturating the
stability condition as follows:

λ+ (p,z,w ) = 1 → pc (z,w ). (23)

Results for qc(z,w) = 1 − pc(z,w) in the ER 2-NON are
shown in Fig. 3 and confirm the excellent agreement between
direct simulations of the random percolation process on
synthetic NONs and the theoretical percolation threshold cal-
culated from Eq. (23). The numerically measured percolation
thresholds, qnum

c (z,w), were obtained at the peak of the second
largest activated component (Fig. 2), measured relative to
the fraction of randomly removed nodes in the synthetic ER
2-NON. The analytical prediction of the percolation threshold,
q

analytic
c (z,w), was obtained from the numerical solution of

Eq. (23).
The large values of qc in the percolation phase diagram

confirm that the NON is very robust with respect to random
node failures. The results indicate, for instance, that a fraction
of more than 70% of randomly chosen nodes in an ER 2-
NON with 〈kconn〉 = 4 can be damaged without destroying
the giant connected activated component G. Moreover, the
percolation transition, separating the phases G > 0 and G = 0,
is of second order in the robust NON (see Fig. 2).

Interestingly, the phase diagram reveals that, for a given
average connectivity-degree z, the NON exhibits maximal
vulnerability qmin

c (z,w∗) = 1 − pmax
c (z,w∗) at a characteristic

average control-degree w∗(z), indicated by the dip in the per-
colation threshold qc in Fig. 3. The equation determining w∗(z)
can straightforwardly be obtained via implicit differentiation
of λ+(pc,z,w) = 1, using ∂pc/∂w |w∗ = 0. Explicitly, w∗(z)

FIG. 3. Percolation phase diagram for ER 2-NONs. Blue curves
show our analytical prediction of the percolation threshold, qanalytic

c , as
a function of w ≡ 〈kctr〉 for different values of z ≡ 〈kconn〉 = 0,2,4,6,
obtained from Eq. (23). Black dots show the measured numerical
percolation threshold, qnum

c , from direct simulation of the random
percolation process, obtained at the peak of the second largest
connected activated component. The green dashed line indicates
the maximal vulnerability qmin

c of the NON. Errors are standard
errors of the mean (s.e.m.) over 10 NON realizations of system size
N = 2 × 106.

is determined by

pc

2

[
1 + z

∂h

∂w
+ z2[1 + h] ∂h

∂w
+ z[1 − h] − zw ∂h

∂w
+ w√

z2[1 + h]2 + 2zw[1 − h] + w2

]∣∣∣∣
w∗

= 0 (24)

with pc(z,w) given by Eq. (23). The numerical solution for
w∗(z) is depicted in Fig. 4. The corresponding curve for
qmin

c (z,w∗) is shown in Fig. 3 and can readily be seen to agree
with the minimum of the analytical predictions q

analytic
c for the

percolation thresholds.

FIG. 4. Maximal vulnerability of ER 2-NONs. Critical average
control degree w∗(z) ≡ 〈kctr〉∗(z) for which the ER 2-NON is most
vulnerable, obtained from the solution of Eq. (24), for a given average
connectivity degree z ≡ 〈kconn〉. w∗(z) minimizes the critical fraction
qc(z,w) of randomly removed nodes for which the giant activated
component collapses, G(qc) = 0, thereby marking the boundary
above which an increase in the density of dependencies leads to a
more robust NON. The corresponding curve for qmin

c is shown in
Fig. 3.

062308-5



ROTH, MORONE, MIN, AND MAKSE PHYSICAL REVIEW E 95, 062308 (2017)

Conceptually, the dip in qc occurs as a consequence of
the competition between dependency and redundancy effects
in the NON. For 〈kctr〉 < w∗, the percolation threshold qc,
and therefore the robustness of the NON, decreases as the
relative fraction of dependency links is increased. For 〈kctr〉 >

w∗, however, the robustness of the NON increases again with
increasing redundancy among the dependency connections. In
other words, the critical average control-degree w∗(z) marks
the boundary above which the onset of redundancy reduces
the impact of deactivations on the giant connected activated
component G, and an increase in the density of dependencies
therefore leads to a more robust NON.

The underlying mechanism responsible for the remarkable
robustness of the NON is best understood from the behavior
of the model in the limit 〈kconn〉 = 0, which corresponds to
a bipartite network equipped with our activation rule for
σi , given by Eq. (1). The corresponding message-passing
equations are straightforwardly obtainable from Eqs. (5) and
(6), ϕi→j = σi[1 − ∏

k∈F(i)\j (1 − ϕk→i)], and can readily be
seen to coincide with the usual single network message-
passing equations by observing that σi can actually be replaced
with ni in this case [the reason is the following: assuming
node i is present (ni = 1), σi = 0 implies that none of i’s
intermodule neighbors is present and so none of the incoming
intermodule messages can be nonzero either]. This property
can of course directly be obtained also from Eq. (22), which
in the limit z = 0 implies

λz=0
± = p

2
{ w ±

√
w2 } → pz=0

c = 1/w. (25)

Therefore, the functioning of control links is well-defined
even if they connect nodes that do not belong to the giant
connected activated component. In the model of Refs. [2,3],
on the other hand, dependency links only exist if they
connect nodes that belong to the largest connected activated
component in their own module. Hence, it is impossible
to construct the NON from below pc (or above qc) using
dependency links in the model of Refs. [2,3]. In the robust
model, we can construct the links even if the nodes are not
in G, allowing us to build the NON from below pc using
dependency connections. Thus, the transition is well-defined
from above and below the percolation threshold.

V. MULTIPLEX NETWORKS

In this section, we show that our model of interdependencies
as well as the presented approach to derive analytical
expressions for the percolation phase diagram can
straightforwardly be applied also to NON with replica nodes,
also known as multiplex networks, multilayer networks
or multigraphs [1,4]. A multiplex network consists of N

nodes interconnected by different kinds of links, sometimes
portrayed as a multilayer structure in which each layer is
formed by a different type of links (connecting the same set of
N nodes). Here we consider a multiplex network composed of
two types of connections: connectivity and control links. More
specifically, we consider Erdös-Rényi multiplex networks,
where both layers are ER random graphs with Poisson degree
distribution. Starting from a single ER random network with
average degree 〈k〉, we randomly choose a fraction f of the
edges and replace them with control links. We thus obtain

FIG. 5. Percolation phase diagram for ER multiplex networks
composed of connectivity and control links. Blue curves show the
analytical percolation thresholds, qanalytic

c , as a function of the fraction
of control links f for different values of 〈k〉 = 〈kconn〉 + 〈kctr〉 =
2,4,6,8, calculated from Eq. (23). Black dots show the measured
numerical percolation thresholds, qnum

c , from direct simulation of the
random percolation process, obtained at the peak of the second largest
connected activated component. The green dashed line indicates the
maximal vulnerability qmin

c of the multiplex. Errors are s.e.m. over 10
realizations of system size N = 106.

an ER multiplex with average control-degree w = f 〈k〉
and average connectivity-degree z = (1 − f )〈k〉, where the
Poisson degree distributions are given by Eqs. (9) and (10).

The activation state σi of a node i in the multiplex is given
by Eqs. (1) and (2), and the self-consistent system of message-
passing equations, specifying for each node whether it belongs
to the giant connected activated component G, can readily be
seen to be given by Eqs. (5)–(7). Thus, the entire approach to
derive the percolation phase diagram carries over, and indeed
all of the above equations (1)–(25) are valid for ER multiplex
networks as well.

The analytical and numerical results for the percolation
phase transition qc(〈k〉,f ) in ER multiplex networks are shown
in Fig. 5. The remarkable robustness of the network with
respect to random node failures is again evident. Moreover,
the phase diagram displays the same qualitative behavior with
respect to the dip in qc(〈k〉,f ) as for the interdependent NON,
which can again be understood to occur from the competition
between dependency and redundancy effects in the network.
The critical fraction of control dependencies f ∗(〈k〉) for which
the ER multiplex is most vulnerable and above which an
increase in the fraction of control links results in a more robust
network is shown in Fig. 6.

The percolation phase diagram for ER multiplex networks
further illustrates the behavior of our model in the limit f = 1
(corresponding to the limit z = 0 discussed above), where
the network is formed entirely from control links. The limit
f = 1 can readily be seen to coincide with the usual single
network limit f = 0, where the network is formed entirely
from connectivity links.
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FIG. 6. Maximal vulnerability of ER multiplex. Critical fraction
of control links f ∗(〈k〉) for which the ER multiplex is most vulnerable,
obtained from the solution of Eq. (24), for a given average degree
〈k〉 = 〈kconn〉 + 〈kctr〉. f ∗(〈k〉) minimizes the percolation threshold
qc(〈k〉,f ) of randomly removed nodes for which the giant connected
activated component collapses, G(qc) = 0, thus marking the bound-
ary above which an increase in the fraction of control dependencies
results in a more robust network. The corresponding curve for qmin

c is
shown in Fig. 5.

VI. CONCLUSION

In conclusion, we have seen that the robustness in NONs can
be understood to emerge if dependency or control links do not
need to be part of the giant connected activated component G

for their proper functioning. In contrast to previously existing
models of interdependent networks [2,3], dependencies in the
robust NON do not lead to cascades of failures. The key point
in our model is that a node can be activated even if it does

not belong to G. An example of the structure of a NON
where the model applies is that of the brain [6–10]. While
in Ref. [6] we have shown that the model of [2] becomes
robust when correlations in the dependencies are considered,
here we show that a local activation rule Eq. (1) akin to brain
control between modules defines a novel model of a NON
that is robust even without correlations. We have seen that the
maximal vulnerability of the NON occurs as a consequence of
the competition between dependency and redundancy effects,
where the critical fraction of dependencies marks the boundary
above which the robustness of the system improves with
increasing control or dependency connections. We have shown
that our model of interdependencies can readily be applied also
to multiplex networks. The presented framework allows us to
derive analytical expressions for the percolation phase diagram
of interdependent networks with arbitrary degree distributions,
for which theoretical predictions similar to the ones presented
can be obtained. Our model is straightforwardly generalizable
also to directed links.
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