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Density of states in granular media in the presence of damping
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We consider the density of states of granular media in which each grain-grain contact is damped with a
damping force proportional to the relative velocity of the two grains, in addition to the usual spring constant.
Under the assumption that the so-called criterion of proportional damping is only weakly violated we are able to
deduce the density of states for undamped frequencies from the measured complex-valued frequencies of damped
oscillations. We deduce a quantitative estimate of the deviation from the proportional criterion. We consider,
specifically, numerical simulations of cases in which the grains are frictionless spheres that interact via Hertz
central forces and all the nonzero contacts are damped with the same damping constant. We show how these
ideas can be applied to data on real granular systems.
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I. INTRODUCTION

In this article we consider the density of states of granular
media in the presence of damping. We develop a theory that,
subject to the validity of the assumed approximation, allows
one to deduce what the density of states of an undamped system
would be, from the measured complex-valued frequencies. The
density of states of undamped granular media has received
much attention in recent years, especially in its connection
with the jamming transition [1–6]. Liu et al. [7] have written
a review article on the topic. The idea is that a system
jammed under the influence of a static stress induces a static
deformation at the grain-grain contacts, each of which thus
acquires a nonzero stiffness for subsequent small-amplitude
deformations. One may thereby calculate the normal modes of
vibration under the assumption that the system may be in the
linear regime of small-amplitude vibrations. Such calculations
assume the force versus displacement law for each contact
follows from some specific law such as the Hertz/Hertz-
Mindlin, or Hooke, or Lennard-Jones laws. Such calculations
neglect the effects of damping at the grain-grain contacts.
In experiments on real granular media, however, damping
can be an important component of the dynamics [8]. Indeed,
granular media can very effectively dampen the vibrations of
metal structures having grain-filled cavities within themselves
(see Ref. [9] and references therein). Moreover, Ref. [8] (and
references therein) shows how it is possible to deduce accurate
values of the complex-valued normal mode frequencies of
a granular aggregate from measurements of the so-called
effective mass of the granular medium.

The purpose of the present article is to show how it may
be possible to deduce the density of undamped vibrational
states of a granular system from the measured complex-valued
normal mode frequencies that one has for damped systems. We
base our results on our own previously published numerical
simulations [10,11] of damped vibrations in granular media,
under stress, in which the grains interact via Hertzian normal
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forces and via a damping mechanism proportional to the
relative velocity of the grain centers. Although the intergran-
ular force is a nonlinear function of contact displacement, we
linearize around the equilibrium point to compute the normal
mode frequencies relevant to small-amplitude vibrations.

There are situations in which there is no small-amplitude
regime, whereby strictly linear equations of motion for the
departure from equilibrium are valid. Schreck et al. [12] have
pointed out that for granular systems interacting via strictly
one-sided repulsive forces there is always a distribution of
noncontact gaps extending continuously to zero, such that in
the thermodynamic limit the smallest amplitude of vibration
will open and close such a gap, which is intrinsically nonlinear.
In the present article we assume that in damped granular media
this situation does not arise. We assume that the forces of
adhesion and adsorption that are the origin of the damping
also ensure that each grain-grain contact has a linear operating
regime, around the equilibrium configuration.

The article is organized as follows. We review a general
theory of vibrational-libration normal modes of damped
granular media in Sec. II. Because we intend our results
ultimately to be applied to experimental results on real systems,
the intergranular forces in this section include both normal and
tangential components of the elastic and the damping forces.
Here, we also present some previously published exact results
relevant to the present work and we derive a new perturbation
theory with which we can ultimately compute the undamped
density of states. In Sec. III we describe how we performed
our calculations of normal mode frequencies in a system
of spherical grains interacting via damped Hertzian contact
forces, i.e., normal forces only. The system is compressed
under the action of the directional force of gravity. We present
our new results on the density of states in Sec. IV. The
conclusions are summarized in Sec. V.

II. THEORY

In this Section we review the assumed general equations
of motion whose solutions determine the normal modes of the
granular medium. We quote some relevant exact results and
we also show the consequences of assuming the proportional
approximation for the damping matrix. We end this section
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with our derivation of a perturbation theory that we employ to
analyze our numerical simulations.

A. General considerations

Let Xi be the equilibrium position of the center of mass of
the ith particle, whose mass is mi , and ui be its displacement
from equilibrium. Similarly, θ i is the librational angle of
rotation. If two neighboring particles translate or rotate such
that their points of contact would move relative to each other
there will be a restoring force due to the contact forces. The
linearized equation of motion for the ith particle is

−miω
2ui =

∑
j

Kij · [uj + θ j × dji − ui − θ i × dij ], (1)

where dij is the vector from Xi to the point of contact with
the j th grain. It is understood that the tensor Kij (≡ Kji) is
nonzero only for grains actually in contact with each other.
(For simplicity we assume there is at most one contact per
pair.)

The equation of motion for the angular variables is

− ω2Ii · θ i =
∑

j

dij ×Kij · [uj + θ j × dji − ui − θ i × dij ],

(2)

where Ii is the moment of inertia tensor for the ith particle.
These equations of motion, Eqs. (1) and (2), were originally
employed in an early attempt to understand the interplay
between rotational and translational degrees of freedom in
the normal modes of granular media [13].

It is understood that, generally, each of the elements of
the tensors Kij is complex-valued and frequency dependent,
reflecting the microscopic origin of the dissipation. In this
article we may take

Kij (ω) → Kij − iωξBij , (3)

in which the second term describes an interparticle force
proportional to the difference in velocity of the two grains.
K and B are taken as real-valued and frequency independent.
The parameter ξ monitors the strength of the damping. If we
think of damping as being controlled by the viscosity of a fluid
in the grain-grain contact, ξ is a stand-in for that viscosity. In
this article we investigate how the normal mode frequencies
evolve as ξ is varied. Note that this definition of B differs
slightly from those in Refs. [10] and [11] in that here we
explicitly factor out ξ from the definition.

Equations (1) and (2) have nontrivial solutions only for spe-
cific complex-valued frequencies ωn. They may be combined
as [−ω2

nM − iωnξB + K
]
en = 0, (4)

where en is the combined vector of normal mode component
displacements ui and librations θ i , M is the inertial tensor
consisting of either the mass of a grain or the relevant
component of the moment of inertia. B and K have been
suitably generalized to this new notation.

Because the kinetic energy of the grains is always positive,
the eigenvalues of M are also all positive. Therefore, the matrix

M−1/2 can be defined and we can re-write Eq. (4) as[−ω2
nI − iωnξ B̃ + K̃

]
ẽn = 0. (5)

Here we have defined ẽn ≡ M1/2en, B̃ ≡ M−1/2BM−1/2, and
K̃ ≡ M−1/2KM−1/2.

Next, we investigate the trajectories of the normal mode
frequencies, ωn, as the damping parameter ξ is varied ωn =
ωn(ξ ). Regardless of the value of ξ > 0, the imaginary part of
any normal mode frequency is always negative, �{ωn(ξ )} < 0,
corresponding to a mode that exponentially decays in time.
Moreover, for every underdamped normal mode frequency in
the fourth quadrant, ω+

n , there is another in the third quadrant,
ω−

n = −(ω+
n )∗, where * signifies complex conjugation, which

is obvious from the structure of Eq. (4). There may also
be overdamped normal modes for which ω±

n are imaginary
valued.

B. Exact results

If there is no damping, ξ = 0, then the real symmetric
matrix K̃ has positive eigenvalues ω2

n0 and the undamped
frequencies of oscillation for the corresponding normal modes
en0 are ±ωn0. For small enough values of the damping one
may do first-order perturbation theory with the result [8]

ω±
n = ±ωn0 − i

ξ

2

ẽT
n0B̃ẽn0

ẽT
n0ẽn0

+ O(ξ 2). (6)

Each normal mode frequency initially moves perpendicular to
the real axis from its starting point on the real axis.

For each trajectory, ωn(ξ ), there exists a critical value ξnc,
which is finite, such that the mode becomes critically damped,
i.e., ωn is purely imaginary. For values of ξ approaching ξnc

one has [10],

lim
ξ→ξnc

ω±
n (ξ ) = −iλn ± gn(ξnc − ξ )1/2 + O(ξ − ξnc)1, (7)

where λn and gn are positive real numbers. Thus, the two
branches ω±

n (ξ ) coalesce onto a single value on the negative
imaginary axis at the critical damping. Their approach to −iλn

as ξ → ξ−
nc is perpendicular to that axis. As ξ increases above

the critical value the two roots remain imaginary and move
apart from −iλn.

C. Proportional damping

In the very special case known as proportional damping [14]
the matrix of damping parameters, B, is everywhere propor-
tional to the matrix of stiffness constants, K. We may subsume
this proportionality constant into the definition of ξ and write

B̃ = K̃. (8)

The distribution of normal stiffness values, kN (xij ), is directly
related to the distribution of interparticle normal forces via
the distribution of deformation values, xij . Such a force
distribution is well known to display an exponential tail and to
be relatively homogeneous [15]. Therefore, Eq. (8) amounts
to neglecting the inhomogeneities in the force distribution as
an approximation for the elastic and damping matrices. If each
contact stiffness value was replaced by the average thereof,
Eq. (8) would be exact.
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If Eq. (8) holds true then the solution to Eq. (5) is simple.
Because ẽno is now an eigenmode of B̃ it is also an eigenmode
of the entire problem. The result is

ω±
n (ξ ) = −iξω2

n0

2
± ωn0

√
1 −

(
ξωn0

2

)2

. (9)

This well-known result obeys the exact results presented in the
previous subsection. One has ξnc = 2

ωn0
.

The trajectories of the normal modes under the condition
of proportional damping are perfect circles with center at the
origin up to the point each becomes overdamped:

|ω±
n (ξ )| = ωn0 ∀ξ � ξnc = 2

ωn0
. (10)

Moreover, the locus of all the (underdamped) normal mode
frequencies for a given value of ξ is also a circle. The radius
is 1/ξ and the center is at −i/ξ [8,10]:

|ω±
n (ξ ) + i/ξ | = 1/ξ ∀n s.t. ξ � ξnc = 2

ωn0
(11)

D. Perturbation theory

We now consider a situation, relevant to our numerical results,
in which the proportional damping criterion, Eq. (8), is
approximately true in the sense that departures from it are
small:

B = K + �B. (12)

We consider the effects of �B to first order in perturbation
theory. We make the substitutions en0 → en0 + �en; ωn(ξ ) →
ωn(ξ ) + �ωn(ξ ) in Eq. (4), or equivalently, Eq. (5), and collect
all the terms that are first order in �B. We have

0 = (−ω2
n − iωnξK̃ + K̃

)
�ẽn

+�ωn(−2ωn − iξK̃)ẽn0 − iωnξ�B̃ẽn0. (13)

Because the matrix K is real-symmetric, so is K̃, which means
that ẽT

n0 is a left eigenvector of K̃, having the same eigenvalue,
ω2

n0. If we multiply Eq. (13) on the left by ẽT
n0 the first term

on the right-hand side vanishes identically and we have our
desired result:

�ω±
n (ξ ) = − iω±

n (ξ )ξ�B̃n,n

2ω±
n (ξ ) + iξω2

n0

+ O(�B̃)2, (14)

where

�B̃n,n = ẽT
n0�B̃ẽn0

ẽT
n0ẽn0

. (15)

With the use of Eq. (9) we may rewrite this in the form

�ω±
n (ξ ) = iω±

n (ξ )�θ±
n , (16)

where

�θ±
n = ∓ ξ�B̃n,n

2ωn0

√
1 − (

ξωn0

2

)2
. (17)

Equations (16) and (17) show that to first order in �B an
under-damped normal mode frequency moves by an angular

amount �θ±
n along the same circular trajectory defined by

Eq. (10):

|ω±
n (ξ ) + �ω±

n (ξ )| = ωn0 + O(�B)2. (18)

We shall use Eq. (18) to deduce information about the
distribution of undamped frequencies ωn0 from our data in
the presence of damping under the assumption that deviations
from the proportional damping criterion are weak.

We note in passing that for any of the overdamped modes
Eq. (16) still holds, but both ω±

n and �θ±
n are imaginary with

the result that �ω±
n is also imaginary, which makes intuitive

sense.

III. NUMERICAL SIMULATIONS

In previous publications [10,11] we reported the results
of normal mode calculations of ensembles of granular media
confined to a container. It is these results on damped granular
media that we will use to deduce the density of states of the
undamped system and so we recap them here. Our interests
then were to gain some understanding of the properties of the
so-called effective mass of granular media [8,16]. Accordingly,
the particles in the simulations were not subjected to an
isotropic confining pressure but, rather, they were subjected
to a directional gravitational field, as per the experiments. The
particles were identical spheres of mass m. We assumed the
particles were frictionless and that they interact with their
neighbors via the Hertz force [17]:

FN = 2
3knR

1/2x
3/2
ij , (19)

where R is the radius and xij > 0 is the degree of compression
of the center-to-center distance between sphere i and sphere j .
(There is no force between noncontacting spheres.) After the
spheres have settled into their equilibrium configuration, each
contact has a different value of the static compression xij ; those
near the top of the container are compressed less than those
near the bottom. Each contact responds to an infinitesimal
additional distortion by means of a spring constant, which is
given by

kN (xij ) = dFN

dxij

= knR
1/2x

1/2
ij . (20)

In tensor notation, then, the expression for the 3 × 3 stiffness
matrix between two contacting spheres is

Kij = kN (xij )d̂ij d̂ij , (21)

where d̂ij is a unit vector pointing from one sphere center to
the other and we are using dyadic notation.

We assumed the damping matrix B is of the same general
form as Eq. (21) except that we assumed all the damping
constants were the same for any two spheres in contact:

Bij = 〈kN 〉d̂ij d̂ij , (22)

where 〈kN 〉 is the average of all the nonzero kN (xij ) values.
The motivation behind this assumption was that we were
attempting to understand the damping effects of adsorbed
fluids at the grain-grain contacts, which are presumably
insensitive to the degree of compression of the two grains.
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FIG. 1. (Color online) The complex-valued normal mode fre-
quencies of the model granular medium for different values of
the damping parameter, ξ . The legend gives the values of 2πξ in
milliseconds. The solid curves are circles of radius 1/(2πξ ) as per
Eq. (11). The dashed lines are the trajectories of three of the normal
mode frequencies as ξ is increased from zero to ξnc and beyond.
All the modes are underdamped for the smallest three values of ξ ,
whereas for the others some of the modes are overdamped.

The complex-valued resonance frequencies of Eq. (4) are
now computed from the eigenvalues {λn} of the matrix A,
which is given in block form as

A =
(

0 I
−M−1K −ξM−1B

)
. (23)

We have ωn = iλn. More details of the simulations may be
found in Refs. [10] or [11]. In the limit of no damping, ξB → 0,
it is easy to prove that the eigenvalues are λn = ±iωn0. In
the absence of damping, then, we retrieve exactly the same
result as diagonalizing the dynamic matrix K̃, as one would
intuitively expect.

The results of our simulations, for different assumed values
of ξ , are shown in Fig. 1 for a situation in which we simulated
314 spheres, giving rise to 1884 normal mode frequencies, the
underdamped of which occur as pairs in the third and fourth
quadrant. This figure is a more complete version of similar
plots shown in Refs. [10] and [11]. Of these 1884 normal
mode frequencies, 22 of them are essentially zero-frequency
modes (|ωn0| < 3 × 10−7 kHz), which we do not include in the
analysis. It is clear that B 
= K. Nonetheless, the consequences
of Eq. (8) are reasonably well attained. Each trajectory is
roughly a circle as per Eq. (10) and each obeys the exact
results, Eqs. (6) and (7). The loci of all the frequencies is

FIG. 2. (Color online) Density of undamped frequencies de-
duced from the underdamped frequencies of Fig. 1. All the modes
for the smallest three values of ξ give results that essentially agree
with each other. The partial densities of states for the remaining three
overlap these results for low frequencies where ωn0 < 2/ξ .

also approximately a circle, Eq. (11). All of the modes are
underdamped for the three smallest values of ξ . Some of the
modes are overdamped (ωn is purely imaginary) for the other
three values of ξ . (See the Supplemental Material [18] for a
movie that shows the evolution of all the complex frequencies
as ξ is continuously increased starting from zero.) The data
lend themselves to an analysis with the perturbation theory
described in Sec. II D.

IV. DENSITY OF STATES

Assuming the approximate validity of Eq. (18) it is easy to
compute the density of undamped states, N (ωn0), from the
measured underdamped frequencies. The number of states
that would have an undamped frequency between ωn0 and
ωn0 + �ωn0 is equal to the number of actual modes for which
|ωn| lies within these limits, for the underdamped modes.
Corrections to this are of order O(�B)2. We have binned all
the underdamped frequencies shown in Fig. 1 accordingly. The
results are shown in Fig. 2. For the three smallest values of ξ

all of the normal modes are underdamped and the resultant
density of states for each of these data sets agrees with
the others. The partial density of states computed from the
simulations corresponding to the three largest values of ξ are
also in agreement with the other three. This agreement is due,
evidently, to the perturbation theory result, Eq. (18).

We note that our results for the undamped density of
states do not exhibit the well-known low-frequency plateau
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characteristic of the density of states in jammed systems
reported by others [1–7]. We attribute this to the several
differences between our calculations and theirs. Our system
is not intended to model a macroscopically infinite system.
Rather, we are modeling the normal modes of a rigid cup,
loosely filled with grains. There is a rigid bottom plane and the
top has a finite extent. Two of the side walls are also rigid; the
remaining direction has periodic boundary conditions. Perhaps
the most obvious difference is that we have included a constant
downward force on each sphere, intended to mimic the force of
gravity. Thus, the spheres toward the bottom are compressed
more than those near the top and the system is macroscopically
heterogeneous. So to say, the distance from the so-called J point
varies continuously from top to bottom.

At this point we may push our luck and compute the
contribution to the densities of undamped states from all the
overdamped states, i.e., those on the negative imaginary axis.
From Eq. (9) we have

ξ > ξnc: |ω±
n (ξ )| = ξω2

n0

2
∓ ωn0

√(
ξωn0

2

)2

− 1 + O(�B)1,

(24)

which can be inverted:

ωn0 = |ω±
n (ξ )|√

ξ |ω±
n (ξ )| − 1

+ O(�B)1. (25)

The overdamped modal frequencies order as |ω+
n (ξ )| < 2/ξ <

|ω−
n (ξ )|. We convert each value of |ω−

n (ξ )| into its undamped
value according to Eq. (25) and compute the contributions of
these frequencies to a partial density of states. The results for
the three data sets that have overdamped modes are shown in
Fig. 3. They agree with each other for frequencies ωn0 > 2/ξ .
This is quite surprising because Eq. (24) has errors of order
(�B)1, unlike Eq. (18).

Pushing our luck further again we plot the total density
of states Ntotal = N + Noverdamped in Fig. 4. Remarkably, all
six data sets, corresponding to damping parameters ξ , which
range over a factor of 2000, stack on top of each other. We
conclude that we have identified a way to deduce the density
of undamped states from measurements of those states that are
possibly heavily damped.

Finally, we use Eq. (17) to deduce some information about
the degree to which the proportional damping condition,
Eq. (8), is violated. The situation is demonstrated graphically
in Fig. 5 where we have highlighted one datum for analysis;
the data set corresponds to 2πξ = 0.4 from Fig. 1. Were
the proportional damping criterion to hold exactly, this point
would lie on the intersection of the two circles given by Eq. (10)
(the dashed curve) and Eq. (11) (the solid curve). (For some of
the underdamped frequencies the two curves do not intersect
and are excluded from the analysis.) The angular deviation,
�θn, between this point and the actual location is related to
the deviation from the proportional criterion by Eq. (18), to
first order. It is simple enough to solve for �B̃nn for each data
point. The results are plotted in Fig. 6 as a function of the
presumed value of ωn0 for each trajectory, for each of the six
data sets.

FIG. 3. (Color online) Density of undamped frequencies de-
duced from the overdamped frequencies of Fig. 1. Only three of the
data sets, corresponding to the largest values of ξ , have overdamped
modes.

FIG. 4. (Color online) Total density of states of the modes whose
complex-valued frequencies are shown in Fig. 1. Each curve is the
sum of the relevant curves in Figs. 2 and 3. These six curves are
essentially all the same.
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FIG. 5. (Color online) Graphical illustration of �θn. The data
set corresponds to 2πξ = 0.4 from Fig. 1 and one of those data
points is isolated. The dashed curve is a circle of radius |ωn| passing
through that point. The solid curve is a circle of radius (2πξ )−1 as per
Eq. (11). The difference between the actual location of the normal
mode frequency and the intersection of these two circles defines �θn,
as indicated. In this example, �θn < 0.

We have plotted the results for the three least damped
systems in the top panel; the other three are plotted in the
bottom panel. There are several interesting features to these
results. First, we see that the results for 2πξ = 0.0008 and
2πξ = 0.008 virtually overlie each other. That for 2πξ = 0.08
is consistent with these two but has a larger spread in apparent
�B̃nn values. This may indicate the breakdown of the first-
order perturbation theory, though we have already seen that
the density of states calculation is still robust. The spread is
noticeably smaller for ωn0 less than 5 kHz in all three data sets.
There is a noticeable systematic variation of �B̃nn with ωn0 in
all three sets.

The situation is significantly different for the case of the
three largest values of the damping parameter, ξ , which are
shown in the lower panel of Fig. 6. Obviously, only those
underdamped modes for which the two circles, Eqs. (10) and
(11), have an intersection are those that can be analyzed. Even
so it is surprising to us that the surviving values of �B̃nn are
so much smaller than those in the top panel of the figure. In
almost all cases we have B̃nn � K̃nn = ω2

n0 as would be a
necessary condition for the validity of first-order perturbation
theory.

We note, however, from Eq. (9), that there is a simple rela-
tion between the polar angle, θn, and the damping parameter,
ξ , when the proportional damping criterion holds:

sin(θ±
n ) = −ξωn0

2
. (26)

FIG. 6. (Color) Deduced values of �B̃nn cross-plotted against
|ωn| ≈ ωn0. (a) The lowest three values of damping, ξ , for which all
the modes are underdamped. (b) The remaining three values of ξ for
which some of the modes are overdamped. For these data sets we
can deduce �B̃nn only for the underdamped of those modes. Note
the change of scale in the axes for the two plots. The dashed curves
demonstrate the maximum value of B̃nn that can be deduced with our
technique.

This, in turn, implies θ±
n (ξ ) → −π/2 with infinite slope as

ξ → ξnc = 2/ωn0. But Eq. (17) indicates that corrections to
Eq. (26) due to the breakdown of the proportional damping
approximation themselves diverge in this limit. Thus, a more
appropriate condition for the validity of first-order perturbation
theory might be the more restrictive relation | d�θ±

n

dξ
| � | dθ±

n

dξ
|.

This restriction would imply that the validity of Eq. (17) should
be restricted to ξ � ξnc. We see from Eq. (17) that solving for
B̃nn from the measured �θn values will tend to collapse B̃nn

to small values, for heavily damped systems.
It is clear from Fig. 5 and Eq. (17) that if �B̃nn is

large enough the computed �θn would mean the resonance
frequency would lie on the negative imaginary axis. For larger
values of �B̃nn the modes would be overdamped and Eq. (17)
would be meaningless. These boundaries are indicated with
the dashed lines in Fig. 6.

These ideas can, at least in principle, be applied to
real experimental data on granular systems. If the number
of measurable frequencies is large enough a cross-plot of
those frequencies in the complex plane could allow one to
deduce the approximate value of ξ , assuming the proportional
damping model has approximate validity. This was partially
accomplished in Fig. 7 of Ref. [10] in which previously
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published experimental data were shown to cluster around the
circle defined by Eq. (11), although the existing data covered
only a small fraction of that circle. The contribution to the
undamped density of states from the underdamped modes does
not require a knowledge of ξ but the contribution from the
overdamped modes does require it as does any estimate of the
deviation, �B̃nn, from the proportional damping criterion.

V. CONCLUSIONS

We have presented a way of analyzing normal mode frequen-
cies of granular media in situations where these frequencies
are complex-valued due to damping. We have argued that in
cases in which the so-called proportional damping criterion
is weakly violated one may reconstruct the density of un-
damped states from the measured complex-valued frequencies.

Furthermore, we have shown how one may deduce specific
information about the relevant matrix elements of the damping
matrix that relate to deviations from strictly proportional
behavior. The ideas presented here work reasonably well on
numerical simulations of the normal modes of a collection
of spheres interacting via Hertz contacts for the stiffness and
with the assumption that all the contacts are damped the same.
We have shown how these ideas can be applied to data on real
granular systems, assuming one is able to measure a significant
number of those frequencies.
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