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Adhesive loose packings of small dry particles†

Wenwei Liu,ab Shuiqing Li,*a Adrian Baulec and Hernán A. Makse*b

We explore adhesive loose packings of small dry spherical particles of micrometer size using 3D discrete-

element simulations with adhesive contact mechanics and statistical ensemble theory. A dimensionless

adhesion parameter (Ad) successfully combines the effects of particle velocities, sizes and the work of

adhesion, identifying a universal regime of adhesive packings for Ad 4 1. The structural properties of the

packings in this regime are well described by an ensemble approach based on a coarse-grained volume

function that includes the correlation between bulk and contact spheres. Our theoretical and numerical

results predict: (i) an equation of state for adhesive loose packings that appear as a continuation from the

frictionless random close packing (RCP) point in the jamming phase diagram and (ii) the existence of an

asymptotic adhesive loose packing point at a coordination number Z = 2 and a packing fraction f = 1/23.

Our results highlight that adhesion leads to a universal packing regime at packing fractions much smaller

than the random loose packing (RLP), which can be described within a statistical mechanical framework.

We present a general phase diagram of jammed matter comprising frictionless, frictional, adhesive as well

as non-spherical particles, providing a classification of packings in terms of their continuation from the

spherical frictionless RCP.

1 Introduction

Packings of particles have been studied to understand the
microstructure and bulk properties of liquids, glasses and crystals,
as well as granular matter.1–4 Studies have focused on high density
jammed packings, which, in the case of uniform frictionless
spheres, are found at the so-called random close packing (RCP)
density.1–6 Mean-field models of metastable glasses under replica
symmetry breaking (RSB) have shown that jamming of frictionless
hard spheres should intrinsically occur over a range of volume
fractions (J-line) f A [fth,fGCP] and at an isostatic coordination
number.2,7–9 Statistical mechanical approaches based on the
volume function, first introduced by Edwards,10 at a mean field
level6,11,12 consider an ensemble average over all mechanically
stable configurations at a given coordination number, which
average over the J-line packings at a constant coordination
number and estimates the jamming fraction fEdw close to the
most probable value at the lower boundary of the J-line. In
this paper, we work under the mean-field Edwards ensemble

approximation which can be easily generalized from spherical
frictionless particles to particles of different shapes, friction
and adhesive properties. We consider an ensemble average over
a fixed coordination number and effectively redrawing the
J-line to a single point close to the lower density predicted by
mean field replica breaking theory.2,7–9 Indeed such an approxi-
mation provides results consistent with the lower bound of
replica theory in infinite dimensional packings.13

In the presence of friction, packings reach lower volume
fractions up to the random loose packing (RLP) limit fRLP E
0.55.6,14–16 Frictional packings at densities smaller than fRLP

are usually not mechanically stable.16–19 However, most pack-
ings of dry small micrometer-sized particles in Nature are
subject to not only friction, but also adhesion forces. In fact,
van der Waals forces generally dominate interactions between
particles with diameters of around 10 mm or smaller. In this
case, the adhesive forces begin to overcome the gravitational
and elastic contact forces acting on the particles and change
the macroscopic structural properties.20,21 Despite the ubiquity
of adhesive particle packings in almost all areas of engineering,
biology, agriculture and physical sciences,21–24 there have only
been few systematic investigations of these packings.25–30 Previous
studies using a discrete element method (DEM) have found that
the packing fraction decreases for adhesive microparticles in a
range of f = 0.165–0.622 with smaller sizes,25 which is also proved
within fE 0.2–0.55 for 4–52 mm particles in both simulation and
experiment.30 A random ballistic deposition and a fluidized bed
technique was used, respectively, to produce the packing fractions
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f = 0.15–0.33 for both uncompressed and compressed samples27

and f = 0.23–0.41 for samples with particle diameters of
7.8–19.1 mm.26 The generation of low density aggregates due
to attractive interparticle forces is well understood in the case
of Brownian colloidal suspensions undergoing gelation.31–33

Here, arrest at low densities typically arises due to an inter-
rupted liquid-gas phase separation.34–37

In this paper, we investigate the low density regime of soft-
sphere, non-Brownian, adhesive particles using a discrete element
method (DEM). The main challenge in simulations is to single out
the effect of the adhesion forces alone, since adhesion, elastic
contact forces and friction all couple within the short-range
particle–particle interaction zone and are further coupled with fluid
forces (e.g., buoyancy, drag and lubrication) across long-range
scales. In our method, the fluid effect is filtered out by assuming
the gravitational sediment under vacuum conditions. Most impor-
tantly, the gravitational effect can be neglected when the relative
deviation of the particle velocity due to gravitational acceleration
during the deposition process is small: (U � U0)/U0 { 1. Here,

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0ð Þ2þ2gH

q
, where H is the characteristic height of the

deposition control volume and U0 the initial particle velocity at the
upper inlet boundary. For all runs in the numerical simulations, we
ensure that the relative velocity deviation is less than 4%. Therefore,
the adhesive packings simply arise due to the competition between
the particle inertia and particle–particle interactions (e.g., adhesion,
elasticity and friction).

2 Discrete element method simulation

In a novel DEM framework specifically developed for adhesive
grains,20,21 both the transitional and rotational motions of each
particle in the system are considered on the basis of Newton’s
second law (see ESI,† Section I). The adhesive contact forces FA

include three terms, the normal adhesive contact force Fne, the
normal damping force Fnd validated by classic particle-surface
impact experiments,20,21 and the tangential force due to the sliding
friction. A JKR (Johnson–Kendall–Roberts) model is employed to
account for Fne between the relatively compliant micro-particles,38

implying that the length scale of elastic deformation is large
compared to the length scale of the adhesive force (with the
particles’ Tabor parameter larger than unity).21 The dissipation
terms, including the sliding, twisting and rolling frictions in the
presence of adhesion, are all approximated by a linear spring–
dashpot–slider model with model parameters given in ref. 39. The
slider considerations mean that the sliding, twisting and rolling
resistances all reach critical values, Fs,crit, Mt,crit and Mr,crit, as three
related displacements exceed certain limits. For displacements
larger than those limits, the resistances stay constant and the
particles start to slide or spin. The critical limits in the presence of
adhesion are given in the following equations,21,22,40

Fs,crit = mf|Fne + 2FC| (1)

Mt,crit = 3paFs,crit/16 (2)

Mr,crit = �4FC(a/a0)3/2YcritR, (3)

where mf is the friction coefficient, Ycrit is the critical angle for
the relative rolling of two particles, and FC is the critical pull-off
force expressed by the work of adhesion (twice the surface
energy, w = 2g): FC = 1.5pwR. Here, R is the effective radius
between two contacting particles (1/R = 1/rp1

+ 1/rp2
) and a is the

radius of the contact area with a0 at equilibrium in the JKR model.
The values or ranges of mf, Ycrit and FC are selected according to the
data from atomic force microscopy measurements.40

The adhesive DEM simulation starts with the random free
falling of 1000 spheres with an initial velocity U0 at a height H
(ESI,† Section II).6,41,42 The horizontal plane for particle deposition
has two equal edges of length L, with periodic boundary conditions
along the two horizontal directions. Here we focus on uniformly
sized particles, with the particle radius ranging from rp = 1 to
50 mm. A sensitivity analysis shows that the difference in fRLP

between the cases L = 20rp and L = 40rp is negligible, indicating
that L = 20rp is large enough to reproduce bulk properties (see
ESI,† Section II). Then, we set L = 20rp. The work of adhesion
(twice the surface energy, w = 2g), e.g., for silica microspheres is
reported at 20–30 mJ m�2.21,40 Setting w = 30 mJ m�2, the
simulations indicate that both particle deposition velocities
and particle sizes significantly affect the packing structures. As
shown in Fig. 1 (or more details in Fig. S3, ESI†), either a large
velocity or large size can produce a relatively dense packing
when other parameters are fixed. A dimensionless adhesion
parameter Ad = w/(2rpU0

2R), defined as the ratio between
interparticle adhesion and particle inertia,43 can be used to
quantify the combined effect of velocity and size. Here, rp is the
mass density of particles. Fig. 2 shows the variation of the
packing volume fraction as a function of Ad for packings with
rp = 1, 5, 10, and 50 mm with w ranging from 5–30 mJ m�2. In
the case of Ad o 1, the data points are scattered between RLP
and RCP, since particle inertia dominates the adhesion and the
friction. However, when Ad 4 1, we obtain an adhesion-
controlled regime, in which the volume fraction decreases
exponentially with increasing Ad, becoming linear at large values
Ad B 10. The lowest packing density achieved is f = 0.154 when
Ad is as high as 48, which agrees well with the data from a
random ballistic deposition experiment27 and DEM simula-
tions.25,30 As discussed above, the negligible gravitational effect
distinguishes our system from that reported in ref. 25 and 30.

In addition to f, a reproducible observable of the packing is
the average coordination number Z, which denotes the average
number of contacts of a sphere in the packing. The isostatic
conjecture predicts the upper and lower bounds of Z = 2d and
Z = d + 1 for frictionless and infinitely rough hard-spheres,
respectively, in d = 3 spatial dimension. In Fig. 2 (inset), we can
see that for Ad o 1 the packings lie indeed within the isostatic
limits reaching the infinitely rough value of Z = 4 at Ad E 1.
This indicates that weak adhesion has a similar effect on the
packing as strong friction. For Ad 4 1, the adhesive packings
fall on a unique curve, analogous to the f dependence. The
lowest Z reached in our simulations is Z = 2.25. Combining our
results for f and Z thus highlights a universal adhesive regime
characterized by the dimensionless parameter Ad. The resulting
curve in the Z–f plane, parametrized by Ad, can be considered as
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an equation of state of packings dominated by adhesion (see
Fig. 4). It is worth noting that Z at Ad { 1 does not reach the
isostatic limit Z = 6 (of frictionless particles) even though the
volume fraction approaches fRCP = 0.64. The reason is that we
do not eliminate the effect of friction and all of our packings
remain frictional with the friction coefficient mf = 0.3. Further-
more, the adhesion is so weak at Ad { 1 that our simulation

corresponds to adhesion-less frictional packings. As we decrease
the friction at Ad o 1, the curve in the Z–f plane reaches RCP
along the RLP–RCP line which is consistent with adhesion-less
frictional packings (see the orange open triangles in Fig. 4).

Before we go on to the statistical theory of adhesive packings,
it is important to examine the validity of our Ad scaling shown in
Fig. 2. From the definition of Ad, we know that Ad reaches a
critical value of Ad = 1 when the work of adhesion balances the
particle inertia. With Ad 4 1 the adhesion dominates the
packing, while it can be negligible when Ad o 1. On the other
hand, when Ad o 1 the friction becomes more and more
important so that our scaling may break down since Ad does
not include friction. For instance, if the infinitely small Ad results
from the sufficiently high particle velocity U0, the packings
approach the RCP limit because of the compression effect; if Ad
and U0 are both small implying a finite large particle radius, the
friction-dependent RLP then applies.17,19 Therefore it is assumed
that the current theory works under the condition of Ad 4 1.

3 Statistical theory of packing with
adhesion

We now derive an analytical representation of the adhesive
equation of state in the spirit of Edwards’ ensemble approach
at the mean-field level.6,11,44 We start with the Voronoi volume
Wi of a reference particle i, which provides a tessellation of the

total volume of the packing: V ¼
PN
i¼1

Wi. The key step is to use a

statistical mechanical description, where we consider the average

Voronoi volume W ¼ hWii. This implies that V ¼ NW and the

packing fraction follows as f ¼ V0=W . Here, V0 is the volume of a

sphere with radius rp in the packing. In turn, W can be expressed
exactly in terms of the pdf p(c,Z) for finding the boundary of the
Voronoi volume at a distance c from the sphere centre for a given
z. We have6,11

W ¼ V0 þ 4p
ð1
rp

c2Pðc;ZÞdc; (4)

where P(c,Z) is the CDF; pðc;ZÞ ¼ � d

dc
Pðc;ZÞ. For P(c,Z), one can

derive a Boltzmann-like form using a factorization assumption of
the multi-particle correlation function into pair correlations44

to find

Pðc;ZÞ ¼ exp �r
ð
OðcÞ

drg2ðr;ZÞ
( )

: (5)

Here, r ¼ N=V ¼ 1=W is the number density and g2(r,Z) the pair
correlation function of two spheres separated by r. The volume
O(c) is an excluded volume for the N � 1 spheres outside of the
reference sphere, since otherwise they would contribute a Voronoi
boundary smaller than c. The exponential form eqn (5) is the key
assumption in our mean-field approach, which corresponds to a
minimal model of correlations motivated from high-dimensional
sphere packings.44 We then model the pair distribution function
g2 in terms of four distinct contributions following the results of

Fig. 1 Typical packing structure: different colors represent different coordina-
tion numbers Z. (a)–(c) Stand for U0 = 0.5, 2 and 6 m s�1, respectively, with
particle radius rp = 1 mm and work of adhesion w = 30 mJ m�2. (d)–(f) Stand for
rp = 1, 5 and 10 mm, respectively, with U0 = 1 m s�1 and w = 30 mJ m�2.

Fig. 2 Semi-log plot of the packing volume fraction as a function of
adhesion parameter. rp1 � w30 in the legend represents the particle radius
rp in units of mm and work of adhesion w in mJ m�2. The horizontal red
dash line indicates the limitation of fRCP = 0.64 and the vertical one the
separation of Ad = 1. The inset shows the variation of the coordination
number Z with Ad.
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simulations and mean-field models of metastable glasses.2,45–49

Indeed an important structure signature of jamming found in
mean field replica models2,45–50 is a power-law peak in the pair
distribution function due to a large number of near contacting
particles.45–50 Quantitative bounds on the possible exponents of
this power-law have been derived by imposing stability of the
contact network under compression.46,49 We consider: (1) a delta-
peak due to contacting particles;6,45,51 (2) a power-law peak over a
range e due to near contacting particles;45,46 (3) a step function
due to bulk particles;6,51 and (4) a gap of width b separating the
bulk and (near) contacting particles. This gap captures the effect
of correlations due to adhesion and is assumed to depend on
Z: b = b(Z). In this way we model the increased porosity at a given Z
compared with adhesion-less packings. Overall, we obtain

g2ðr;ZÞ ¼
Z

rl
d r� 2rp
� �

þ s r� 2rp
� ��nY 2rp þ e� r

� �
þY r� 2rp þ bðZÞ

� �� �
:

(6)

For the power law term, we assume n = 0.38 from47 and a width of
e = 0.1rp, which is approximately the range over which the peak
decreases to the bulk value 1 as observed in ref. 45. The value s is
then fixed by continuity with the step function term in the
absence of a gap. Next we have to determine the gap of width
function b(Z) which is the crucial assumption of the theory. b(Z)
needs to satisfy a set of constraints that we impose purely on
physical grounds: (i) b(Z) is a smooth monotonically decreasing
function of Z. Here, the physical picture is that for small Z
(corresponding to looser packings), the gap width is larger due
to the increased porosity of the packing. (ii) At the isostatic limit
Z = 6, the gap disappears, b(6) = e, and we expect to recover the
frictionless RCP value, since this value of Z represents a
maximally dense disordered packing of spheres. We obtain
from eqn (4)–(6) indeed the prediction of ref. 6 for RCP at
fEdw = 0.634 by choosing an appropriate value of l. Moreover,
we need to account for low dimensional corrections due to the
hard-core excluded volume of the reference sphere, such that

r! �r ¼ 1=ðW � V0Þ, where V0 is the volume of a sphere with
radius rp.44 This constraint thus fixes r and l, as well as one of
the parameters in b(Z). (iii) In addition, we conjecture the
existence of an asymptotic adhesive loose packing (ALP) at
Z = 2 and f = 1/23 which yields b(2) = 1.47 and fixes a second
parameter in b(Z). This is motivated by the fact that f = 1/2d is
the well-known lower bound of saturated sphere packings in d
dimensions.51 Moreover, Z = 2 is the lowest possible value for a
physical packing – if Z o 2, there are more spheres with a
single contact (i.e., dimers) than with three or more contacts,
which identifies that the ALP point is only asymptotic.

Overall, we can thus in principle choose a parametric form
of b(Z) satisfying the above constraints. It is natural to use a
three parametric form, e.g., the exponential form b(Z) = c1 +
c2e�c3Z or a second order polynomial b(Z) = c1 + c2Z + c3Z2, such
that one fitting parameter is left after the two constraints b(6) =
e and b(2) = 1.47 are imposed. Or else just a simple linear form
b(Z) = c1 + c2Z can be applied. Solving eqn (4)–(6) numerically

for W (and thus f) using the functional form of b(Z) leads to a

family of curves with a single free parameter, c3. Fitting this
parameter to the available data yields the value of c3. Table 1
shows the fitting parameters of the three different forms of b(Z)
and Fig. 3 further highlights that the exponential decay of b(Z)
provides an excellent fit to the simulation data, while the linear
or second order polynomial performs considerably worse. We
then obtain a unique equation of state f(Z) for adhesive
packings as shown in Fig. 4 which agrees well with the simulation
data. For large Ad values, the ALP point at (2, 0.125) is indeed
approached in the Z–f plane. The reduction of all the parameters
in eqn (6) is then summarized in Table 2 for a clear expression.
It should be noted that a direct fit of the continuation in the

Table 1 Fitting parameters of different forms of b(Z)

Forms c1 c2 c3

Exponential 1.47/(1 � e4c3) 1.47/(e�2c3 � e�6c3) 1.0
Quadratic 2.205 + 12c3 �0.3675 � 8c3 0.09
Linear 2.205 �0.3675

Fig. 3 Adhesion continuation with different forms of b(Z). The inset
shows a comparison of the theoretical P(c,Z) (lines) under the exponential
form of b(Z) with the simulation data (dots).

Fig. 4 Equation of state for adhesive packings: simulation data and
theoretical prediction from eqn (4)–(6) with a single fitting parameter
(black dashed line). The simulation data include only that of rp = 1 mm in
order to guarantee the typical adhesive characteristics of the packing.
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Z–f plane with a second order polynomial would lead to similar
results in the phase diagram. However, this would indeed be a
fit without any physical insight contrary to our approach. As
discussed above, we essentially have only a single free para-
meter to fit the continuation. Much more important though is
the observation that the distribution of the Voronoi volumes
P(c,Z) (see the inset of Fig. 3) that results from our approach
agrees well with the empirically observed distribution over the
whole range of packing fractions observed, except for a ‘‘bump’’
in P(c,Z) at low packing densities. It is an artifact of our theory
which is caused by the sudden crossover from the d-function
term to the y-function term in eqn (6). This means that
including b(Z) captures well the essential structural features
of the packing. The fact that such a simple modification of the
theory for non-adhesive particles, motivated on physical
grounds, leads to such good agreement not only in the low
density regime, but also for mid to high densities, is highly
intriguing in our view.

4 Results and discussion

Including previous results from ref. 6, 11 and 13 in the Z–f
plane leads to a phase diagram of packings of frictionless,
frictional, adhesive and adhesive-less spheres, as well as non-
spherical particles (see Fig. 4). The collection of these results
highlights the prominent role of the frictionless RCP point
(fEdw) in the phase-diagram, despite that it contracts the J-line
which has been corroborated in finite dimensional simulations
with varying jamming protocols.50,52,53 This jamming point
fEdw is close to the lower boundary fth due to the large number
of metastable glass states around fth. It is expected that the
RSB J-line obtained for frictionless packings2,7–9,50,52,53 would
be an integral part of packings in general, loose and adhesion
ones or perhaps even with friction as studied here. However,
replica symmetry breaking packings are out of current reach of
mathematical capabilities in these realistic cases. Thus such a
J-point approximation could provide an effective perspective to
look into the intrinsic physics of these numerous packings.
From Fig. 4, we observe that non-spherical packings are
smoothly continued at RCP into either the adhesive branch
or the frictional branch. By contrast, the coexistence line from
RCP to the melting point of crystalline packings, conjectured in
ref. 13, does not connect smoothly to any of these branches. It
suggests that particle deformation (which parametrizes the
non-spherical branch) is a ‘‘natural’’ way to increase packing

densities in disordered arrangements. On the other hand,
introducing order is a more drastic modification, similar to a
distinction between the discontinuous 1st and continuous
higher-order phase transitions.

We now compare our athermal packings with gel phases in
Brownian suspension, which exist over a similar range of
densities.33–37 By construction all our packings are percolating
mechanically stable jammed packings with an infinite bond
lifetime. Therefore, we identify the ALP as a minimal density
packing for which a percolating contact network exists. By
comparison, there exist indeed colloidal systems exhibiting a
similar critical packing density fc dividing percolating and
non-percolating aggregates in the T - 0 limit.32 When the
liquid-gas phase separation is suppressed, e.g., by long-range
repulsion, a percolation threshold can be found at fc E 0.1 for
the T - 0 separating cluster and network phases in a regime of
large attraction strengths.54–58 Alternatively, phase separation
can be suppressed by artificially introducing an upper limit on
the particle’s coordination number, which shifts the spinodal
decomposition to smaller T and f. In this case, a percolating
ideal gel phase is reached for T - 0, where fc E 0.2 separates
the gel from the two-phase region.59,60 Such an ideal gel also
appears in a lattice model of attractive colloids, where fc E
0.1.61 Additionally, by decreasing the average short-ranged
square well attraction sites per hard sphere patchy particles,
disordered states can be reached at low T and very small
fc(o0.13) without encountering phase separation.62 In order
to gain further structural insight we perform a topological
cluster classification (TCC)28,33 to characterize the structure.
For small densities close to the ALP, we observe that (see Fig. 5)
particles are mostly aggregated in clusters of m = 4, 5 and 3,
indicating a tree-like packing structure with a coordination
number of Z = 3. Here, m stands for the number of particles
contained in a cluster. The low density cluster statistics is thus
similar to models that impose an upper limit of Z.59,60 For
larger densities we can compare our packing structures with
recent results on the TCC of gel and glass phases in a colloidal
system of sticky spheres.33 In this case, the major components

Table 2 Summary of reduction of the fitting parameters

Parameters Constraints Values

n Assumption from ref. 47 0.38
e Assumption from ref. 45 0.1rp
s Continuity with the step function term Fixed value
r, l Isostatic limit Z = 6 from ref. 6 Fixed value
c1 Isostatic limit Z = 6 from ref. 6 �0.0274
c2 Asymptotic ALP conjecture and ref. 51 11.0646
c3 Fitting parameter with the above

parameters fixed
1.0

Fig. 5 Topological cluster classification of adhesive particle packings. The
volume fraction is in the range of f = 0.154–0.61 with Z = 2.25–5.18. m is
the size of clusters and Nc/N stands for the fraction of clusters.

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
7 

Ju
ly

 2
01

5.
 D

ow
nl

oa
de

d 
by

 C
ity

 C
ol

le
ge

 o
f 

N
ew

 Y
or

k 
on

 1
1/

01
/2

01
6 

22
:0

8:
35

. 
View Article Online

http://dx.doi.org/10.1039/c5sm01169h


This journal is©The Royal Society of Chemistry 2015 Soft Matter, 2015, 11, 6492--6498 | 6497

of our dense packing structure are clusters of m = 8, 7 and 6.
Without any phase transition, our dense packing structures
undergo a smooth change of dominating clusters from m E 4
to m E 7, which is quite different from the sudden changes in
gel and glass transitions.33

5 Conclusions

In summary, we have identified a packing regime of adhesive
small particles across 1 to 102 microns, using both DEM
simulations and a statistical mechanical framework. Our
results highlight that attraction in (spherical) particles leads
to a lower density limit for percolation at the ALP with fc = 1/23.
The equivalent fc in attractive colloids is observed empirically
over a range of densities fc E 0.1–0.2 depending on the
mechanism for the suppression of phase-separation. The situa-
tion is thus reminiscent of the adhesion-less and frictionless
range of densities, f A [fth,fGCP], predicted by mean field
replica models.2,7–9,50,52,53 As discussed in the Introduction our
mean-field Edwards ensemble approach leads to a unique
volume fraction fEdw which is extended along the adhesive
line. It would be interesting to see if a similar range of jamming
densities can be predicted for attractive interparticle forces.
Replica approaches have indeed been applied to attractive
colloids in high dimensions. Here, a reentrant glass transition
and multiple glass states have been found.63,64 More insight
could be obtained by extending the full replica solution of
jammed spheres in infinite dimensions8,9 to incorporate both
friction and adhesion, if possible.
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23 J. Blum and R. Schräpler, Phys. Rev. Lett., 2004, 93, 115503.
24 K. M. Kinch, J. Sohl-Dickstein, J. F. Bell, J. R. Johnson,

W. Goetz and G. A. Landis, J. Geophys. Res.: Planets, 2007,
112, E06S03.

25 R. Y. Yang, R. P. Zou and A. B. Yu, Phys. Rev. E: Stat. Phys.,
Plasmas, Fluids, Relat. Interdiscip. Top., 2000, 62, 3900–3908.

26 J. M. Valverde, M. A. S. Quintanilla and A. Castellanos, Phys.
Rev. Lett., 2004, 92, 258303.

27 J. Blum, R. Schräpler, B. J. R. Davidsson and J. M. Trigo-
Rodrı́guez, Astrophys. J., 2006, 652, 1768.

28 C. L. Martin and R. K. Bordia, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 2008, 77, 031307.

29 G. Lois, J. Blawzdziewicz and C. S. O’Hern, Phys. Rev. Lett.,
2008, 100, 028001.

30 E. J. R. Parteli, J. Schmidt, C. Blumel, K.-E. Wirth, W. Peukert
and T. Poschel, Sci. Rep., 2014, 4, 06227.

31 W. C. K. Poon, J. Phys.: Condens. Matter, 2002, 14, R859.
32 E. Zaccarelli, J. Phys.: Condens. Matter, 2007, 19, 323101.
33 C. P. Royall, S. R. Williams and H. Tanaka, arXiv:cond-mat.soft/

1409.5469, 2014.
34 V. Trappe, V. Prasad, L. Cipelletti, P. N. Segre and

D. A. Weitz, Nature, 2001, 411, 772–775.
35 M. A. Miller and D. Frenkel, Phys. Rev. Lett., 2003,

90, 135702.
36 P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino

and D. A. Weitz, Nature, 2008, 453, 499–503.
37 A. Fortini, E. Sanz and M. Dijkstra, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2008, 78, 041402.
38 K. L. Johnson, K. Kendall and A. D. Roberts, Proc. R. Soc.

London, Ser. A, 1971, 324, 301–313.
39 M. Yang, S. Li and Q. Yao, Powder Technol., 2013, 248,

44–53.

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
7 

Ju
ly

 2
01

5.
 D

ow
nl

oa
de

d 
by

 C
ity

 C
ol

le
ge

 o
f 

N
ew

 Y
or

k 
on

 1
1/

01
/2

01
6 

22
:0

8:
35

. 
View Article Online

http://dx.doi.org/10.1039/c5sm01169h


6498 | Soft Matter, 2015, 11, 6492--6498 This journal is©The Royal Society of Chemistry 2015

40 L.-O. Heim, J. Blum, M. Preuss and H.-J. Butt, Phys. Rev.
Lett., 1999, 83, 3328–3331.
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