
This journal is©The Royal Society of Chemistry 2017 Soft Matter, 2017, 13, 421--427 | 421

Cite this: SoftMatter, 2017,

13, 421

Equation of state for random sphere packings
with arbitrary adhesion and friction

Wenwei Liu,a Yuliang Jin,b Sheng Chen,a Hernán A. Maksec and Shuiqing Li*a

We systematically generate a large set of random micro-particle packings over a wide range of adhesion

and friction by means of adhesive contact dynamics simulation. The ensemble of generated packings

covers a range of volume fractions f from 0.135 � 0.007 to 0.639 � 0.004, and of coordination

numbers Z from 2.11 � 0.03 to 6.40 � 0.06. We determine f and Z at four limits (random close

packing, random loose packing, adhesive close packing, and adhesive loose packing), and find a

universal equation of state f(Z) to describe packings with arbitrary adhesion and friction. From a

mechanical equilibrium analysis, we determine the critical friction coefficient mf,c: when the friction

coefficient mf is below mf,c, particles’ rearrangements are dominated by sliding, otherwise they are

dominated by rolling. Because of this reason, both f(mf) and Z(mf) change sharply across mf,c. Finally, we

generalize the Maxwell counting argument to micro-particle packings, and show that the loosest

packing, i.e., adhesive loose packing, satisfies the isostatic condition at Z = 2.

1 Introduction

Random packings of uniform spherical particles have been
studied to model simple liquids, metallic and colloidal glasses,
and granular materials.1–3 In packings of large grains like glass
beads, both elastic and frictional forces play important roles. In
the frictionless case, the volume fraction f is generally found
around the random close packing (RCP) limit at fRCP E 0.64.1,2,4–6

The presence of friction substantially extends the volume fraction
to a range [fRLP, fRCP], where the lower limit fRLP E 0.55 is often
referred to as the random loose packing (RLP), corresponding to
the large friction coefficient mf limit.6–11 Furthermore, friction also
has a significant impact on the isostatic condition of random
packings. The minimal average coordination number, Z, required
to obtain static packings is Z = 4 for mf = N and Z = 6 for mf = 0.12

While it is well known that RCP satisfies the isostatic condition, it
has been reported that a frictional packing is also isostatic if one
considers only interactions between asperities on contacting
particles13 or excludes fully mobilized contacts at the Coulomb
threshold.14,15

For micro-particles, they are subject to not only elastic and
frictional forces but also adhesive and electrostatic forces.10,16,17

For instance, van der Waals forces become non-negligible and

generally dominate interactions between micron-sized particles
smaller than 10 mm. In this case, adhesive forces could distinctly
change the structural and mechanical properties of packings.16,18

However, despite the ubiquitous application of micro-particle
packings in various areas such as engineering, biology, agriculture
and physical sciences,18–20 studies on such packings are
limited.17,20–24 In particular, little attention has been paid to
the problem of how the adhesive packings change for arbitrary
friction.

For micro-particle packings, simulations and experiments
have found that both the volume fraction and the coordination
number can go far below the RLP limit.20–22,25 The lowest
volume fraction reported in experiments is f = 0.15 by random
deposition of 1.5 mm particles in a vacuum.20 Simulations
suggest that there could exist a lower asymptotic limit, referred
to as the adhesive loose packing (ALP) limit24 at fALP E 0.125
and ZALP E 2, corresponding to infinitely adhesive and
frictional packings. It has been shown that for a deposition
process, the effect of electrostatic forces can be integrated into
an effective adhesion, and thus the existence of electrostatic
forces does not change the overall range of packing fractions.17

The two major factors that determine the volume fraction and
the coordination number are friction and adhesion. In this
paper, we systematically study a large set of micro-particle
packings over a wide range of adhesion and friction values.
We confirm that ALP is indeed the lower limit of both f and Z
for the ensemble of our numerically generated packings.
We also discover a new adhesive close packing (ACP) limit
that corresponds to the case with zero adhesion and infinite
friction.
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2 Discrete Element Method Simulation

We perform numerical simulations of micron-sized particles
via the discrete element method (DEM).16,18,26,27 The particles
are soft, adhesive, frictional, and non-Brownian. The DEM
framework used in this work is specifically developed for
micro-particles.16,18,28 Both the translational and rotational
motions of each particle follow the Newton’s second law,

m
dv

dt
¼ Fg þ FA;

I
dO
dt
¼ MA;

(1)

where v and X are, respectively, the velocity and the rotation
rate of an individual particle, m is the particle mass, and I is the
moment of inertia. The system is assumed to be in a vacuum,
so that fluid forces and torques are ignored. Fg is the gravity. FA

and MA denote the adhesive contact forces and the torques on
the particle. They include

FA = Fnn + Fsts,

MA = rpFs(n � ts) + Mr(ts � n) + Mtn, (2)

where Fn is the normal force including the adhesively elastic
contact force Fne and the damping force Fnd, Fs is the tangential
force due to the sliding friction, Mr is the rolling resistance and
Mt is the twisting resistance. rp is the particle radius. n, ts and tr

are the normal, tangential and rolling direction unit vectors,
respectively.

A JKR (Johnson–Kendall–Roberts) model is applied to
account for Fne between the relatively compliant micro-
particles.29 The solid-phase dissipation force Fnd caused by
the viscoelasticity of materials is assumed to be proportional
to the rate of change of material deformation. Thus, the normal
force Fn is given by

Fn ¼ Fne þ Fnd ¼ 4FC
a

a0

� �3

� a

a0

� �3=2
" #

þ ZNtR � n; (3)

where FC is the critical pull-off force expressed by the surface
energy g: FC = 3pgR, a is the radius of the contact area with a0 at
equilibrium in the JKR model, ZN is the normal dissipation
coefficient and vR is the relative velocity at the contact point on
particle surfaces. Here R is defined as the effective radius
between two contacting particles, 1/R = 1/rp1

+ 1/rp2
.

The dissipative friction terms, including the sliding, twisting
and rolling terms in the presence of adhesion, are all approximated
by a spring–dashpot–slider model with model parameters given in
ref. 16 and 30. The slider considerations mean that the sliding,
twisting and rolling resistances all reach critical values, Fs,crit, Mt,crit

and Mr,crit, when corresponding displacements exceed certain
limits. Once these limits are reached, the particles start to slide
or spin, and the resistances remain unchanged at the critical
values, which are given by

Fs,crit = mf|Fne + 2FC|,

Mt,crit = 3paFs,crit/16,

Mr,crit = �4FC(a/a0)3/2YcritR. (4)

Here Ycrit is the critical angle for the relative rolling between
two particles. The values or ranges of Ycrit and g are selected
according to the data obtained from atomic force microscopy
measurements.31,32 The long-range electrostatic interactions
are neglected because their effects on f and Z can be integrated
into an effective adhesion parameter.17

As shown in Fig. 1, our simulation starts from the sequential
adding of 1000 spheres of radius rp from an inlet plane at a
height H with an initial velocity U0 under gravity. The initial
position of each particle at the inlet is randomly decided. The
direction of U0 is the same as that of gravity, pointing to the
positive of the x-axis. The gravitational effect on the deposition
process is negligible due to the small time duration. This
distinguishes our system from those in ref. 21 and 25, which
generate particles randomly in a box without touching each
other and allow them to deposit under gravity. Periodic boundary
conditions are set along the two horizontal directions of length
L. The physical parameters used in the simulations, including
the particle size, the surface energy, etc., are all listed in Table 1.
The friction coefficient is changed from mf = 10�5 to mf = 10. It
can be shown that for this setup, the volume fraction and the
coordination number only depend on two independent parameters,
the friction coefficient mf and the dimensionless adhesion
parameter,17,24

Ad = g/(rpU0
2R), (5)

where rp is the mass density. The adhesion parameter Ad
combines the effects of particle velocity, size and adhesion.

Fig. 1 A schematic of the simulation domain.
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Fig. 2 shows the dependence of the volume fraction f and
the coordination number Z on the friction coefficient mf, for
several fixed adhesion parameters Ad. For each fixed Ad, both
f and Z reach their upper limits when mf r 10�4, and decrease
with the increase of mf until their lower limits are obtained
when mf 41 (Fig. 2(a) and (b)). Fitting the data to constants for
mf r 10�4 (mf 4 1) gives the maximum (minimum) values of
f and Z for each Ad. The maximum Zmax E 6 is independent of
Ad, which corresponds to the isostatic condition of frictionless
sphere packings. This result indicates that adhesion has no effect
on the coordination number when friction is sufficiently small.
The other asymptotic values fmax, fmin and Zmin are all Ad-
dependent, and can be fitted to exponential laws (Fig. 2(c) and (d)),

fmax(Ad) = fRLP + a1e�l1Ad

fmax(Ad) = fALP + a2e�l2Ad

Zmin(Ad) = ZALP + be�xAd (6)

where a1 = 0.145, l1 = 0.159, a2 = 0.415, l2 = 0.123, b = 1.74, and x =
0.13. As discussed in ref. 24, Ad = 1 is a critical threshold below
which the adhesion is negligible. Thus, in this paper, we define
Ad = 1 as the adhesionless limit. Note that in ref. 24, only one fixed
value mf = 0.3 is used, which lies in the asymptotic regime mf 4 0.1.

Based on the above results (Fig. 2 and eqn (6)), we extra-
polate four limits for the ensemble of micro-particle packings

generated by our numerical protocol: the random close packing
RCP, the random loose packing RLP, the adhesive close packing
ACP, and the adhesive loose packing ALP (see Table 2). At RCP
and RLP, our volume fractions fRCP = 0.639 and fRLP = 0.512
are close to the previously reported values fRCP E 0.641,4,6

and fRLP E 0.55.6–11 The coordination numbers ZRCP = 6.4 and
ZRLP = 3.87 are close to the isostatic condition ZRCP = 6 and
ZRLP = 4. A little higher ZRCP is due to the compression caused by
particle inertia. The values fALP = 0.135 and ZALP = 2.11 are close
to the conjecture fALP = 0.125 and ZALP = 2.24 As for ACP, similar
results of fACP = 0.569 and ZACP = 6.09 has been found in DEM
simulations with mf = 0.2.23 We point out that these limits are
obtained within our protocol, and their values might change in
another protocol.2,5 The well-defined lower bound at fALP = 0.135
is in contrast to ref. 10, which argues that there is no lowest
volume fraction for cohesive and frictional packings.

3 Equation of state

Next we show that the volume fraction f and the coordination
number Z of micro-particle packings follow a simple universal
equation of state (EOS),

1

f
� 1 ¼ C

Zg; (7)

where both parameters C and g depend on Ad (see Fig. 3). In the

adhesionless limit, CðAd! 1Þ ! 2
ffiffiffi
3
p

and g(Ad - 1) - 1, which
are consistent with the theoretical EOS of adhesionless packings

f ¼ Z
�

Z þ 2
ffiffiffi
3
p� �

:6 The left-hand side term
1

f
� 1 in eqn (7) is

equal to reduced free volume function o, which is defined as o =
(W � Vg)/W, where W is the average volume of the Voronoi cell of
each particle, and Vg is the volume of a particle. Eqn (7) suggests a
simple power-law relation between o and Z (see Fig. 3(b)),

o ¼ C

Zg: (8)

The EOSs, eqn (7) and (8) work well for most of the simulation
data; exceptions are found when mf 4 0.1 for the largest
Ad = 48, where small deviations from eqn (7) and (8) are observed.

The power-law scaling of the macroscopic EOS, eqn (8),
implies an invariant property of a probability distribution function
(PDF) that describes Voronoi cell boundaries. It can be shown that
o is related to the PDF p(os) of the orientational reduced free
volume function os (see Fig. 4(a)),

o ¼
ð1
0

osp osð Þdos; (9)

Table 1 Parameters used in DEM simulations of micro-particle packings

Parameter Value Unit

Simulation box length (L) 20rp mm
Falling height (H) 4L mm
Particle radius (rp) 1, 5, 10, 50 mm
Mass density (rp) 2500 kg m�3

Surface energy (g) 0.05�15 mJ m�2

Initial velocity (U0) 0.5 m s�1

Friction coefficient (mf) 10�5�10

Fig. 2 (a) The volume fraction f and (b) the coordination number Z of
random micro-particle packings are plotted as functions of mf, for a few
fixed Ad. The asymptotic values (c) fmin, fmax, (d) Zmax and Zmin are plotted
as a function of Ad. The solid lines are exponential fittings according to
eqn (6). The dashed lines are Ziso derived from isostatic conditions (Table 2).

Table 2 Volume fraction f and coordination number Z at four limits of
random micro-particle packings. The Ziso values are isostatic values
obtained from the counting argument

Ad mf f Z Ziso

RCP 1 0 0.639 � 0.004 6.4 � 0.06 6
RLP 1 N 0.512 � 0.004 3.87 � 0.04 4
ACP N 0 0.512 � 0.002 6.19 � 0.04 6
ALP N N 0.135 � 0.007 2.11 � 0.02 2
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where os = (c/rp)3 � 1 and c is the distance from the center of a
particle to its Voronoi boundary (VB). Both p(os) and its inverse

cumulative distribution function (ICDF) P4 osð Þ ¼ 1�
Ðos

0 pðxÞdx
depend on mf and Ad. Eqn (8) and (9) suggest that P4(os) should
have a form (the dependence on mf and Ad are shown explicitly)

P4(os;mf,Ad) = q(Ad)F[osZ(mf,Ad)g(Ad);Ad], (10)

where the prefactor q and the functional form of F(x) only
depend on Ad but not mf. Indeed, substituting eqn (10) in
eqn (9) recovers the EOS, eqn (8). Eqn (10) shows that for any
fixed Ad, if one plots P4(os) (or p(os)) as a function of osZg,

the data at different mf values should collapse onto a master
curve, which is confirmed in Fig. 4. Note that P4(os) is
essentially related to n-particle correlation functions gn for all
orders of n.33 Thus the collapse of P4(os) reveals some invariant
property of correlations between particles under different frictions.
This invariant property is not incorporated into the standard pair
correlation function g2(r), since its corresponding ICDF P4(or)
does not collapse on a rescaled plot as a function of orZg, where
or = (r/2rp)3 � 1 is the free-volume-like parameter associated with
the inter-particle distance r (see Fig. 4).

4 Mechanical equilibrium analysis

In micro-particle packings, the coordination number Z can
reach as low as two, which is way below the isostatic condition
Z = 6 for non-adhesive frictionless packings. Indeed, in our
simulations, a large number of particles with only one or two
contacts can be mechanically stabilized. For the simplest case
shown in Fig. 5, we explain how adhesion and friction make
particles with one contact (the top particle p1 in the inset of
Fig. 5) reach mechanical equilibrium. Without adhesion, the
particle p1 would never be stabilized except for y = 01. However,
in the presence of adhesion, when two contact particles start to
or have the tendency to roll, the rear side of the contact surface
will remain in touch instead of detaching immediately, until
the critical pull-off force FC is reached. This process is known as
the necking process. As a consequence, the attractive normal
stress on the rear side will provide additional rolling resistance
to prevent the particle from rolling over. The competition
between the rolling (pull-off condition) and sliding (Coulomb
friction law) conditions determines the stability condition for
the particle (see Appendix). Fig. 5 shows the mechanical
equilibrium diagram in terms of angle y and the normalized
external force Fext/FC, for particles with Z = 1. The area under

Fig. 3 (a) Simulation data f(Z) (points) of micro-particle packings with a
few different Ad values, where for each fixed Ad, the friction coefficient mf

is varied from 10�5 to 10 (see Fig. 2). The solid line is the theoretical
prediction for non-adhesive packings in ref. 6. The dotted lines are fittings
to the EOS, eqn (7). (b) Simulation data o(Z) (points) are compared to the
EOS, eqn (8) (dotted lines), on log–log scales. The fitting parameters g and
C are given in (c) and (d), respectively.

Fig. 4 (a) Two-dimensional illustration of the definition of c. The inverse cumulative distribution functions P4(os) at different mf values are plotted as a
function of osZg, for (b) Ad = 48, (c) Ad = 8 and (d) Ad = 0.96, respectively. (e) Two-dimensional illustration of the definition of r. The inverse cumulative
distribution functions P4(or) at different mf values are plotted as a function of orZg, for (f) Ad = 48, (g) Ad = 8 and (h) Ad = 0.96, respectively.
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the lines indicates the equilibrium region of the corresponding
friction condition. We can see that for each fixed mf, the particle
can even be stabilized at y = 901, as long as the external force
Fext is sufficiently small, which would never happen in non-
adhesive packings. When mf 4 mf,c, where mf,c is a critical
friction coefficient (for instance mf,c E 0.01 for rp = 5 mm as
indicated in Fig. 5), the rolling equilibrium line lies under the
sliding equilibrium line, implying that particles roll first before
they begin to slide. In this case, the rearrangement during the
packing formation is dominated by rolling, which agrees well
with the fact that rolling is generally the preferred deformation
mode for small adhesive particles.18,19 On the other hand, when
mf o mf,c, sliding lines shift to the left of the rolling line. In this
case, the additional rolling resistance caused by adhesion is not
able to hold the particle and it will slide first, leading to a
prominent rearrangement of its position. Although here we only
consider the simplest case Z = 1, Fig. 2 shows that both f(mf) and
Z(mf) indeed have a steep change around mf B mf,c, indicating the
separation of rolling- and sliding-dominant regimes.

5 Isostatic condition

To further understand the behavior of coordination number
Z as shown in Fig. 2(b), we generalize the Maxwell counting
argument for the isostatic condition.6,34 A packing is isostatic
when the degree of freedom equals the number of constraints:

Nn + Nt + NT = Ef + Et, (11)

where Nn, Nt, NT, Ef, and Et are the total numbers of normal
forces, tangential forces, additional contacting torques caused
by adhesion, force balance equations, and torque balance
equations, respectively. It should be noted that in the Maxwell
counting argument for non-adhesive cases, the real forces are
assumed to be point forces acting at the exact contact point, i.e.

the center of the contact surface, since they are symmetrically
distributed in the contact surface. As a result, all the torques in
the torque balance equations originate from the point forces
and there are no undetermined torque variables. However, for
adhesive micron-sized particles, the phenomenon of material
‘‘necking’’ gives rise to an asymmetry of the forces in the
contact region, leading to the additional torque variable NT.

From the analysis of the isostatic condition eqn (11), we
obtain the coordination number for three special cases (see
Table 3). (i) In frictionless packings (mf = 0), each contact has

one normal force Nn ¼
1

2
NZ

� �
and no tangential forces (Nt = 0).

The contact forces are distributed symmetrically in the contact
area regardless of whether there is adhesion or not and therefore
do not generate torques (NT = 0). In this case, the isostatic
condition gives Ziso(mf = 0, Ad) = Ziso

RCP = Ziso
ACP = 6. (ii) In infinitely

frictional and non-adhesive packings (mf = N, Ad = 1, RLP limit),6

each contact has two additional tangential forces in orthogonal
directions (Nt = NZ). In addition to three independent force
balance equations (Ef = 3N), each particle also needs to satisfy
three independent torque balance equations (Et = 3N). Solving
eqn (11) gives Ziso

RLP = 4. (iii) In infinitely frictional and infinitely
adhesive packings (mf = N, Ad = N, ALP limit), each contact
provides three additional independent torque variables

NT ¼
3

2
NZ

� �
, which result from the asymmetry of the contact

forces. In this case, eqn (11) predicts Ziso
ALP = 2. We do not discuss

the general case with arbitrary mf and Ad, for which first-
principles analysis is unavailable.

6 Conclusions

In summary, the influence of friction on random adhesive loose
packings of uniform spherical micro-particles is examined by
using adhesive DEM simulations. The volume fraction and the
coordination number can be well characterized by two dimension-
less parameters mf and Ad, and are found to follow a universal
equation of state f(Z). Our results significantly extend the
existing phase diagram of random packings.6,24

For the ensemble of packings generated in our simulations,
we find a new ACP limit that is corresponding to Ad = N and
mf = 0. We also confirm the ALP limit reported in previous
studies.17,24 It would be interesting to examine these limits in
experiments. The lowest reported experimental packing fraction
is f = 0.15,20 which is above but not too far away from our
fALP = 0.135 � 0.007. Our numerical protocol – depositing
micro-particles randomly into a vacuum container – basically
resembles the experiments in ref. 20. Our results suggest that

Fig. 5 Mechanical equilibrium diagram of micro-particles with one contact.
The solid lines are rolling equilibrium lines for rp = 1, 5, 10, 50 mm (from right
to left). The others are sliding equilibrium lines with mf = 0.1, 0.01, and 0.001
(from right to left). The area under the lines indicates the equilibrium region
that the particle does not roll or slide. The inset shows the schematic of force
and torque balance conditions.

Table 3 Number of constraints and degrees of freedom determining the
isostatic condition in micro-particle packings

Parameters Nn Nt NT Ef Et Ziso

mf = 0, any Ad 1
2NZ 0 0 3N 0 6

mf = N, Ad = 1 1
2NZ NZ 0 3N 3N 4

mf = N, Ad = N
1
2NZ NZ 3

2
NZ 3N 3N 2
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the loosest packing generated in such procedures shall be
sought under maximum friction and adhesion.

Appendix A: derivation of the
mechanical equilibrium diagram

The inset in Fig. 5 shows the force traction of two contact particles
in two dimensions. We consider the mechanical equilibrium of
the top particle p1. Two force equations and one torque equation
must be satisfied to make p1 reach mechanical equilibrium, which
can be written as

Fextsin y � ft = 0,

�Fextcos y � fn1 + fn2 = 0,

Fextrpsin y � 1
2a( fn1 + fn2) = 0 (A1)

Here the normal stress is simplified into two point forces fn1

and fn2. It should be noted that for adhesive micron-sized
particles, fn1 is usually attractive due to the material ‘‘necking’’,
while for non-adhesive granular matter, both fn1 and fn2 are
repulsive. Solving eqn (A1), we obtain

ft ¼ Fext sin y;

fn1 ¼
Fext

2

2rp sin y
a

� cos y
� �

;

fn2 ¼
Fext

2

2rp sin y
a

þ cos y
� �

:

(A2)

To keep particle p1 mechanically balanced, the Coulomb friction law
in the presence of adhesion must be satisfied, as shown in eqn (4).
We also must make sure that the pull-off does not occur, which
means that fn1 � 1

2
FC: Therefore, the conditions to guarantee the

balance of particle p1 are then

ft r mf (�fn1 + fn2 + 2FC),

fn1 r 1
2FC (A3)

Substituting eqn (A2) into inequation (A3), we have

Fext

FC
� 2mf

sin y� mf cos y
;

Fext

FC
� 1

2rp sin y
a

� cos y
:

(A4)

Here the equilibrium radius of the contact surface in the JKR model

a0 ¼
9pgR2

2E

� �1=3

is applied to estimate a, where E represents the

elasticity of particles. By changing mf and y in inequation (A4), we
can draw the mechanical equilibrium diagram.

Acknowledgements

This work has been funded by the National Natural Science
Funds of China (No. 51390491) and the National Key Basic

Research Program of China (No. 2013CB228506). H. A. Makse
acknowledges funding from NSF and DOE. We thank Profs. M. Doi,
N. V. Brilliantov, and J. S. Marshall for fruitful discussions on
the contact dynamic model, and Dr G. Liu, M. Yang, H. Zhang,
Mr R. Tao, and W. Shi for their useful suggestions.

References

1 J. D. Bernal, Nature, 1959, 183, 141–147.
2 G. Parisi and F. Zamponi, Rev. Mod. Phys., 2010, 82, 789–845.
3 A. Coniglio, A. Fierro, H. J. Herrmann and M. Nicodemi,

Unifying Concepts in Granular Media and Glasses: From the
Statistical Mechanics of Granular Media to the Theory of
Jamming, Elsevier, 2004.

4 C. S. O’Hern, L. E. Silbert, A. J. Liu and S. R. Nagel, Phys. Rev.
E: Stat., Nonlinear, Soft Matter Phys., 2003, 68, 011306.

5 S. Torquato and F. H. Stillinger, Rev. Mod. Phys., 2010, 82,
2633–2672.

6 C. Song, P. Wang and H. A. Makse, Nature, 2008, 453, 629–632.
7 G. Y. Onoda and E. G. Liniger, Phys. Rev. Lett., 1990, 64,

2727–2730.
8 M. P. Ciamarra and A. Coniglio, Phys. Rev. Lett., 2008,

101, 128001.
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