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Abstract 

We illustrate the general principle that in biophysics, econophysics and possibly even city 
growth, the conceptual framework provided by scaling and universality may be of use in mak- 
ing sense of complex statistical data. Specifically, we discuss recent work on DNA sequences, 
heartbeat intervals, avalanche-like lung inflation, urban growth, and company growth. Although 
our main focus is on data, we also discuss statistical mechanical models. 

1. Introduction 

The twin pillars of  scaling and universality support much of  our current concep- 

tualization on the general subject o f  just how complex systems formed of  interacting 
subunits should behave [1]. These pillars were constructed a quarter century ago by 
scientists interested in the behavior of  a system near its critical point. Progress was 
made possible by a remarkable combination of  experiment and phenomenological the- 
ory. To help conceptualize the problem, the Ising model came to play a key role, and 
indeed most o f  the ideas that emerged were tested on this model system. 

The Ising model is defined to be a set of  classical spins localized on the sites of  
a lattice. Each spin is a one-dimensional object that can point either "up" or "down." 
The ferromagnetic Ising interaction is particularly simple: I f  two neighboring spins are 
parallel (both up or both down), then there is a negative contribution to the energy. 
Hence the lowest energy of  the entire system will be the configuration in which all the 
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spins in the system are parallel. The Ising model can be regarded as a crude model 

of a ferromagnet if we think of the classical spins as representing the constituent 
microscopic moments comprising the ferromagnet. 

Studies of the Ising model reveal a remarkable feature. If one tunes a "control 
parameter" - the temperature T - then one finds that, at a certain critical value To, spins 
remarkably far apart have orientations that are strongly correlated. Such correlations 
do not lend themselves to a ready explanation. The reason is that normally in physics 
modelling "you get out what you put in". In the case of the Ising model, we "put in" 
an interaction that extends a finite distance. Magically, we "get out" a correlation that 
spreads an infinite distance. How does this happen? 

Our intuition tells us that the correlation C ( r )  between subunits separated by a 
distance r should decay exponentially with r - for the same reason the value of money 
stored in ones mattress decays exponentially with time (each year it loses a constant 
fraction of its worth). Thus C ( r )  ~ e -r/c, where ¢ is termed the correlation length - 
the characteristic length scale above which the correlation function is negligibly small. 
Experiments and also calculations on mathematical models confirm that correlations do 
indeed decay exponentially so long as the system is not exactly at its critical point, 
where the rapid exponential decay turns into a long-range power-law decay of the 
form C ( r )  ,-~ r - n ,  where r/ is called a critical exponent [1]. If correlations decay with 

a power-law form, we say the system is "scale free" since there is no characteristic 
scale associated with a simple power law. 

Critical exponents, such as r/, are found empirically to depend most strongly upon the 
system dimension and on the general symmetry properties of the constituent subunits, 
and not on other details of the system under investigation. We understand power law 
decay as arising primarily from the multiplicity of interaction paths that connect two 
spins in dimensions larger than one [2]. Exact enumeration methods take into account 
exactly the contributions of such paths - up to a maximum length that depends on 
the strength of the computer used and the patience of the investigator. To obtain 
quantitative results, the hierarchy of exact results is extrapolated to infinite order. In 
some sense, although the correlation along each path decreases exponentially with the 
length of the path, the number of such paths increases exponentially. The "gently 
decaying" power-law correlation emerges as the victor in this competition between the 
two warring exponential effects. 

Cyril Domb, Michael Fisher, the late Walter Marshall and their colleagues pioneered 
such exact enumeration approaches in the 1970s. Among the results emerging from 
their efforts was a calculation of the scaling equation of state in a magnetic field [3]. A 
remarkable feature of much work is that the system studied does not perfectly mirror the 
conditions of the model definition, yet the scaling equation of  state measured conforms 
almost perfectly to the calculated result [3]. How can that be? 

The quick answer is one word: "universality". The word universality connotes the fact 
that quite disparate systems behave in a remarkably similar fashion near their respective 
critical points - simply because near their critical points what matters most is not the 
details of  the microscopic interactions but rather the nature of the "paths along which 
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order is propagated". The experiments in question are essentially two-dimensional, and 
the component "magnetic moments" have sufficient anisotropy in their interactions that 
when acting collectively they behave as one-dimensional classical spins. Hence the 
experimental system mirrors a two-dimensional Ising model! 

At one time, it was imagined that the "scale-free" case was relevant to only a fairly 
narrow slice of physical phenomena [1]. However, the range of systems that apparently 
display power law correlations has increased dramatically in recent years, ranging from 
base pair correlations in DNA [4], lung inflation [5, 6] and interbeat intervals of the 
human heart [7] to complex systems involving large numbers of interacting subunits 
that display "free will," such as govern city growth [8] and even economics [9-13]. The 
principle of universality seems to be reflected in the empirical fact that quite different 
systems can have remarkably similar critical exponents - perhaps the "interaction paths" 

between the constituent subunits dominate the observed cooperative behavior more than 
the detailed properties of the subunits themselves. 

The purpose of this lecture is to describe a few examples of recent progress in 
applying concepts of modem statistical physics to systems of relevance to biology, 
medicine, urban growth, and economics. 

2. Scaling in biology and medicine: A brief survey 

In the last decade, it was realized that some biological systems have no characteristic 
length or time scale, i.e., they have fractal - or, more generally, self-affine - proper- 
ties [14-16]. However, the fractal properties in different biological systems, have quite 
different nature, origin, and appearance. In some cases, it is the geometrical shape of 
a biological object itself that exhibits obvious fractal features, while in other cases the 

fractal properties are more "hidden" and can only be perceived if data are studied as 
a function of time or mapped onto a graph in some special way. After an appropriate 
mapping, such a graph may resemble a mountain landscape, with jagged ridges of all 
length scales from very small bumps to enormous peaks (see Fig. 1). Mathematically, 
these landscapes can be quantified in terms of fractal concepts such as self-affinity. 

In contrast to compact objects, fractal objects have a very large surface area. In fact, 
they are composed almost entirely of "surface." This observation explains why fractals 
are ubiquitous in biology, where surface phenomena [16] are of crucial importance. 

Lungs exemplify this feature (see Fig. 2). The surface area of a human lung is as 
large as a tennis court. The mammalian lung is made up of self-similar branches with 
many length scales, which is the defining attribute of a fractal surface. The efficiency 
of the lung is enhanced by this fractal property, since with each breath oxygen and 
carbon dioxide have to be exchanged at the lung surface. The structure of the bronchial 
tree has been quantitatively analyzed using fractal concepts [15-17, 5]. In particular, 
fraetal geometry could explain the power law decay of the average diameter of the 
bronchial tube with the generation number, in contrast to the classical model which 
predicts an exponential decay [18]. 
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Fig. 1. The DNA walk representation for the rat embryonic skeletal myosin heavy chain gene (c~ = 0.63). 
At the top the entire sequence is shown. In the middle the solid box shown in the top is magnified. At 
the bottom the solid box shown in the middle is magnified. The statistical self-similarity of these plots is 
consistent with the existence of a scale-free or fractal phenomenon which we call a fractal landscape. Note 
that one must magnify the segment by different factors along the ¢ (horizontal) direction and the y (vertical) 
direction; since F has the same units (dimension) as y, these magnification factors Me and My (along f and 
y directions respectively) are related to the scaling exponent ~ by the simple relation c~ = log(My)~ log(M/) 
[e.g., from top to middle, log(My)/log(Mf) = 1og(2.07)/1og(3.2) = 0.63]. 

Not only the geometry o f  the respiratory tree is described by fractal geometry, but 

also the t ime-dependent features o f  inspiration. Specifically, Suki et al. [5] studied air- 

way opening in isolated dog lungs. During constant flow inflations, they found that the 

lung volume changes in discrete jumps  (Fig. 2), and that the probabil i ty distribution 

function o f  the relative size x o f  the jumps,  H(x) ,  and that o f  the time intervals t 

between these jumps,  H(t) ,  follow a power  law over nearly two decades o f  x and t 

with exponents o f  1.8 and 2.7, respectively. To interpret these findings, they developed 

a branching airway model  in which airways, labeled i j ,  are closed with a uniform 

distribution o f  opening threshold pressures P. When the "airway opening" pressure Pao 
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exceeds Pij of an airway, that airway opens along with one or both of its daughter 

branches if Pij < Pao for the daughters. Thus, the model predicts "avalanches" of 
airway openings with a wide distribution of sizes, and the statistics of the jumps agree 
with those II(x) and II(t) measured experimentally. They concluded that power-law 
distributions, arising from avalanches triggered by threshold phenomena, govern the 
recruitment of terminal airspaces. 

A second example is the arterial system which delivers oxygen and nutrients to 
all the cells of the body. For this purpose blood vessels must have fractal properties 
[19, 20]. The diameter distribution of blood vessels ranging from capillaries to arteries 
follows a power-law distribution which is one of the main characteristics of fractals. 
Sernetz et al. [21] have studied the branching pattems of arterial kidney vessels. They 
analyzed the mass-radius relation and found that it can be characterized by fractal 
geometry, with fractal dimensions between 2 and 2.5. Similarly, the branching of trees 
and other plants, as well as root systems have a fractal nature [22]. Moreover, the size 
distribution of plant-supported insects was found to be related to the fractal distribution 
of the leaves [23]. 

One of the most remarkable examples of a fractal object is the surface of a cauliflower, 
where every little head is an "almost" exact reduced copy of the whole head formed 
by intersecting Fibonacci spirals of smaller heads, which in rum consist of spirals of 
smaller and smaller heads, up to the fifth order of hierarchy. West and Goldberger 
were first to describe such a "Fibonacci fractal" in the human lung [15]. (For a general 
review of fractals in physiology and medicine see also Ref. [15].) 

Considerable interest in the biological community has also arisen from the possi- 
bility that neuron shape can be quantified using fractal concepts. For example, Smith 
et al. [24] studied the fractal features of vertebrate central nervous system neurons in 
culture and found that the fractal dimension is increased as the neuron becomes more 
developed. Caserta et al. [25] showed that the shapes of quasi-two-dimensional retinal 
neurons can be characterized by a fractal dimension df. They found for fully devel- 
oped neurons in vivo, df = 1.68 5: 0.15, and suggest that the growth mechanism for 
neurite outgrowth bears a direct analogy with the growth model called diffusion limited 
aggregation (DLA). The branching pattem of retinal vessels in a developed human eye 
is also similar to DLA [20]. The fractal dimension was estimated to be about 1.7, in 
good agreement with DLA for the case of two dimensions. For an altemative model 
for retinal growth see [26]. 
( 

Fig. 2. The dynamic mechanism responsible for filling the lung involves "avalanches" or "bursts" of  air 
that occur in all sizes - instead of an exponential distribution, one finds a power-law distribution [5]. The 
underlying cause of this scale-free distribution of avalanches is the fact that every airway in the lung has 
its own threshold below which it is not inflated. Shown here is a diagram of the development of  avalanches 
in the airways during airway opening. At first, almost all airways whose threshold value is smaller than 
the external pressure (red) are closed. Then the airway opening pressure increases until a second threshold 
is exceeded, and as a result all airways further up the tree whose thresholds are smaller become inflated 
(green). The airway opening pressure is successively increased until third, fourth, and fifth thresholds are 
exceeded (yellow, brown, and blue). The last threshold to be exceeded results in filling the airways colored 
violet; we notice that this last avalanche opens up over 25% of the total lung volume, thereby significantly 
increasing the total surface area available for gas exchange. After [5]. 
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The DLA-type model governing viscous fingering may also serve to resolve the age- 
old paradox "Why doesn't the stomach digest itself?" [27]. Indeed, the concentration 
of hydrochloric acid in the mammalian stomach after each meal is sufficient to digest 
the stomach itself, yet the gastric epithelium normally remains undamaged in this harsh 
environment. One protective factor is gastric mucus, a viscous secretion of specialized 
cells, which forms a protective layer and acts as a diffusion barrier to acid. Bicarbon- 
ate ion secreted by the gastric epithelium is trapped in the mucus gel, establishing a 
gradient from pH 1-2 at the lumen to pH 6-7 at the cell surface. The puzzle, then, 
is how hydrochloric acid, secreted at the base of gastric glands by specialized parietal 
cells, traverses the mucus layer to reach the lumen without acidifying the mucus layer. 
Bhaskar et al. [27] resolved this puzzle by experiments that demonstrate the possibility 
that flow of hydrochloric acid through mucus involves viscous fingering - the phe- 
nomenon that occurs when a fluid of lower viscosity is injected into a more viscous 
one (see Fig. 3). Specifically, Bhaskar et al. demonstrated that injection of hydrochlo- 
ric acid through solutions of pig gastric mucin produces fingering patterns which are 
strongly dependent on pH, mucin concentration, and acid flow rate. Above pH 4, dis- 
crete fingers are observed, while below pH 4, hydrochloric acid neither penetrates the 
mucin solution nor forms fingers. These in vitro results suggest that hydrochloric acid 
secreted by the gastric gland can penetrate the mucus gel layer (pH 5-7)  through 
narrow fingers, whereas hydrochloric acid in the lumen (pH 2) is prevented from dif- 
fusing back to the epithelium by the high viscosity of gastric mucus gel on the luminal 
side. 

Yet another example of DLA-type growth is bacterial colony spread on the surface of 
agar (gel with nutrient) plates [28]. Vicsek et al. [29] studied bacterial colony growth 
on a strip geometry which results in a self-affine surface (see Fig. 13.19 in [30]). They 
calculated the roughness exponent ~ for this surface and found a = 0.78 • 0.07. The 
interfacial pattern formation of the growth of bacterial colonies was studied systemat- 
ically by Ben-Jacob et al. [31]. They demonstrated that bacterial colonies can develop 
a pattern similar to morphologies in diffusion-limited growth observed in solidification 
and electro-chemical deposition. These include fractal growth, dense-branching growth, 
compact growth, dendritic growth and chiral growth. The results indicate that the inter- 
play between the micro level (individual bacterium) and the macro level (the colony) 
play a major role in selecting the observed morphologies similar to those found in 
nonliving systems. 

Another example of fractal interface appears in ecology, in the problem of the ter- 
ritory covered by N diffusing particles [32] (see Fig. 4). As seen from the figure, the 
territory initially grows with the shape of a disk with a relatively smooth surface until 
it reaches a certain size, at which point the surface becomes increasingly rough. This 
phenomenon may have been observed by Skellam [33] who plotted contours delineat- 
ing the advance of the muskrat population and noted that initially the contours were 
smooth but at later times they became rough (see Fig. 1 in [33]). 

Other biological contexts in which fractal scaling seems to be relevant are the relation 
between brain size and body weight [34], between bone diameter and bone length [35], 



H.E. Stanley et al./Physica A 231 (1996) 20-48 27 

Fig. 3. Viscous fingers reflect the complex interface that develops when one fluid is pumped through another 
of higher viscosity. Shown is the formation of such viscous fingers or channels when hydrochloric acid is 
injected into solutions of gastric mucin. These channels may confine the acid and direct it to the lumen, 
thus protecting the gastric mucosa from acidification and ulceration; when the gastric glands contract, acid 
is ejected under high enough pressure to form viscous fingers. After [27]. 

be tween muscle  force and muscle  mass [35], and be tween an o rgan i sm ' s  size and its 

rate o f  producing energy and consuming  food [36]. 

3. Scaling in DNA base pair sequences 

The role o f  genomic  D N A  sequences in coding for protein structure is well  

known  [37]. The human  genome contains  informat ion for approximately 100000 dif- 

ferent proteins, which define all inheri table features o f  an individual .  The genomic  



28 H.E. Stanley et al. IPhysica A 231 (1996) 20-48 

Fig. 4. Snapshots at successive times of the territory covered by N random walkers for the case N = 500 
for a sequence of times. Note the roughening of the disc surface as time increases. The roughening is 
characteristic of the experimental findings for the diffusive spread of a population [33]. After [32], courtesy 
of P. Trunfio. 

sequence is likely the most sophisticated information database created by nature through 

the dynamic process of  evolution. Equally remarkable is the precise transformation of 

information (duplication, decoding, etc.) that occurs in a relatively short time 

interval. 
The building blocks for coding this information are called nucleotides. Each nucleo- 

tide contains a phosphate group, a deoxyribose sugar moiety and either a purine or a 

pyrimidine base. Two purines and two pyrimidines are found in DNA. The two purines 
are adenine (A) and guanine (G); the two pyrimidines are cytosine (C) and thymine 

(T). 
In the genomes of high eukaryotic organisms only a small portion of the total genome 

length is used for protein coding (as low as 3% in the human genome). The segments 
of  the chromosomal DNA that are spliced out during the formation of a mature mRNA 

are called introns (for intervening sequences). The coding sequences are called exons 

(for expressive sequences). 
The role of  introns and intergenomic sequences constituting large portions of the 

genome remains unknown. Furthermore, only a few quantitative methods are currently 
available for analyzing information which is possibly encrypted in the noncoding part 
of the genome. 

One interesting question that may be asked by statistical physicists would be whether 

the sequence of the nucleotides A, C, G, and T behaves like a one-dimensional "ideal 
gas", where the fluctuations of  density of certain particles obey Gaussian law, or if 
there exist long-range correlations in nucleotide content (as in the vicinity of a critical 
point). These result in domains of all sizes with different nucleotide concentrations. 
Such domains of various sizes were known for a long time but their origin and sta- 
tistical properties remain unexplained. A natural language to describe heterogeneous 
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DNA structure is long-range correlation analysis, borrowed from the theory of critical 

phenomena [ 1 ]. 
In order to study the seale-invariant long-range correlations of a DNA sequence, we 

first introduced a graphical representation of DNA sequences, which we term a frac- 
tal landscape or DNA walk [4]. For the conventional one-dimensional random walk 
model [38], a walker moves either "up" [u(i) = +1] or "down" [u(i) = -1]  one unit 
length for each step i of the walk. For the case of an uncorrelated walk, the direc- 
tion of each step is independent of the previous steps. For the case of a correlated 
random walk, the direction of each step depends on the history ("memory") of the 
walker. 

One definition of the DNA walk is that the walker steps "up" if a pyrimidine 
(C or T) occurs at position i along the DNA chain, while the walker steps "down" if 
a purine (A or G) occurs at position i (see Fig. 1). The question we asked was whether 
such a walk displays only short-range correlations (as in a Markov chain) or long-range 
correlations (as in critical phenomena and other scale-free "fractal" phenomena - see 
Fig. 1). A different type of DNA walk was introduced earlier by Azbel [39]. 

There have also been attempts to map DNA sequence onto multi-dimensional DNA 
walks [40,41]. However, recent work [42] indicates that the original purine-pyrimidine 
rule provides the most robust results, probably due to the purine-pyrimidine chemical 
complementarity. 

An important statistical quantity characterizing any walk is the root mean square 
fluctuation F ( ( )  about the average of the displacement of a quantity Ay(()  defined by 

Ay( f )  =- Y((o + {)  - Y({o), where 

/ 

y ( ( )  =-- Z u ( i ) .  (1) 
i=1 

If there is no characteristic length (i.e., if the correlations were "infinite-range"), then 
fluctuations will also be described by a power law 

F ( ( )  ~ {~ (2) 

' The exponent ~ is the self-similarity parameter mentioned above and with ~ # 3" 
therefore is directly related to long-range correlations in the sequence. 

The fact that data for intron-containing and intergenic (i.e., noncoding) sequences 
are linear on this double logarithmic plot confirms that F ( # ) ~  (~. A least-squares fit 
produces a straight line with slope e substantially larger than the prediction for an 
uncorrelated walk, e = ½, thus providing direct experimental evidence for the presence 
of long-range correlations. 

Fig. 5 shows the DFA exponent e(~') for the nine sequenced chromosomes of Sac- 
charomyces cerevisiae using the purine-pyrimidine rule and the hydrogen bond energy 
rule. Note that although the landscapes look quite different, the LRC exponent ~(~) 
is very similar for different chromosomes. For # < 1000 bp the different chromosomes 
have almost identical c~({). This similarity indicates that the correlation properties of 
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Fig. 5. (a) DNA walk for yeast chromosomes III and VIII. (b) Local exponent ct(¢) measured on length scale 
f. Note that even though the two chromosomes have dramatically different landscapes, the a(•) functions 
are similar. 

the different chromosomes are almost the same for E < 1000 bp. Note also how the first 

couple o f  peaks in ct([) roughly coincide for the different chromosomes in Fig. 7(b). 

This indicates that the nine chromosomes have similar patch sizes, because peaks in 

ct(E) correspond to characteristic patch sizes. 
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4. Scaling in nonstationary heartbeat time series 

Clinicians often describe the normal activity of  the heart as "regular sinus rhythm." 

But in fact cardiac interbeat intervals normally fluctuate in a complex, apparently 
erratic manner [44] [Fig. 6(a)]. This highly irregular behavior has recently motivated 

researchers [45, 46] to apply time series analyses that derive from statistical physics, 

especially methods for the study of  critical phenomena where fluctuations at all length 

(time) scales occur. These studies show that under healthy conditions, interbeat interval 

time series exhibit long-range power-law correlation reminiscent of  physical systems 
near a critical point [47, 1]. Furthermore, certain disease states may be accompanied 

by alterations in this scale-invariant (fractal) correlation property. 
The work in Ref. [7] is based on the digitized electrocardiograms of  beat-to-beat 

heart rate fluctuations recorded with an ambulatory (Holter) monitor. The time series 

obtained by plotting the sequential intervals between beat i and beat i + 1, denoted 

by B(i) ,  typically reveals a complex type of  variability [Fig. 6(a)]. The mechanism 

underlying such fluctuations appears to be related primarily to countervailing neuroau- 

tonomic inputs. The nonlinear interaction (competition) between the two branches of  
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Fig. 6. (a) The interbeat interval time series B(i) of 1000 beat. (b) The integrated time series: 
y(k) = Z/k=l[B(i)- Bay], where B(i) is the interbeat interval shown in (a). The vertical dotted lines 
indicate box of size n = 100, the solid straight lines segments are the estimated "trend" in each box by 
least-squares fit. 
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the autonomic nervous system is the postulated mechanism for the type of erratic heart 
rate variability recorded in healthy subjects [44, 48]. 

An immediate problem facing researchers applying time series analysis to interbeat 
interval data is that the heartbeat time series is often highly nonstationary. To overcome 
this problem, we introduced a modified fluctuation analysis of a random walk - termed 
detrended fluctuation analysis (DFA) [49] - to the analysis of physiological data. 
The advantages of DFA over conventional methods (e.g., spectral analysis and Hurst 
analysis) are that it permits the detection of long-range correlations embedded in a 
seemingly nonstationary time series, and also avoids the spurious detection of apparent 
long-range correlations that are an artifact of nonstationarity. 

To illustrate the DFA algorithm, we use the interbeat time series shown in Fig. 6(a) 
as an example. Briefly, the interbeat interval time series (of total length N) is first 
integrated, y(k) --- ~ '~=l[B(i)-  Bav], where B(i) is the ith interbeat interval and Bay 
is the average interbeat interval. Next the integrated time series is divided into boxes 
of equal length, n. In each box of length n, a least-squares line was fit to the data 
(representing the trend in that box) [Fig. 6(a)]. The y coordinate of the straight line 
segments is denoted by yn(k). Next we detrend the integrated time series, y(k), by 
subtracting the local trend, yn(k), in each box. The root-mean-square fluctuation of this 
integrated and detrended time series is calculated by 

i 1  u F(n) = ~ Z [ y ( k  ) - yn(k)] 2. 
k=l 

(3) 

o 

0 -1 

-2 

-3  
0 

f i 
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= . 
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Fig. 7. Plot of  logF(n)  versus logn for two very long interbeat interval time series (~24  h). The circles 
are for a healthy subject while the triangles are from a subject of  congestive heart failure. Arrows indicate 
"'crossover" points in scaling. 
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Fig. 7 compares the DFA analysis of representative 24 h interbeat interval time series 
of a healthy subject ( Q )  and a patient with congestive heart failure (A). Notice that 
for large time scales (asymptotic behavior), the healthy subject shows almost perfect 
power-law scaling over two decades (20 ~<n ~< 10 000) with ~ = 1 (i.e., 1 / f  noise) while 
for the pathologic data set ~ ~ 1.3 (closer to Brownian noise). This result is consistent 
with our previous finding that there is a significant difference in the long-range scaling 
behavior between healthy and diseased states [45, 46]. 

5. Scaling in urban growth patterns 

Predicting urban growth is important for the challenge it presents to theoretical frame- 
works for cluster dynamics [50-52]. Recently, the model of diffusion limited aggrega- 
tion (DLA) [53] has been applied to describe urban growth [50], and results in tree-like 
dendritic structures which have a core or "central business district" (CBD). The DLA 
model predicts that there exists only one large fractal cluster that is almost perfectly 
screened from incoming "development units" (people, capital, resources, etc.), so that 
almost all the cluster growth occurs in the extreme peripheral tips. In a recent work [8] 
an alternative model to DLA that better describes the morphology and the area distri- 
bution of systems of cities, as well as the scaling of the urban perimeter of individual 
cities, has been developed. The results agree both qualitatively and quantitatively with 
actual urban data. The resulting growth morphology can be understood in terms of the 
effects of interactions among the constituent units forming a urban region, and can be 
modeled using the correlated percolation model in the presence of a gradient. 

In the model one takes into account the following points: 
(i) Urban data on the population density p(r)  of actual urban systems are known 

to conform to the relation [54] p(r)  = poe -;r, where r is the radial distance from the 

CBD situated at the core, and 2 is the density gradient. Therefore, in our model the 
development units are positioned with an occupancy probability p(r )  - p(r)/po that 
behaves in the same fashion as is known experimentally. 

(ii) In actual urban systems, the development units are not positioned at random. 

Rather, there exist correlations arising from the fact that when a development unit 
is located in a given place, the probability of adjacent development units increases 
naturally - i.e., each site is not independently occupied by a development unit, but is 
occupied with a probability that depends on the occupancy of the neighborhood. 

In order to quantify these ideas, we consider the correlated percolation model 
[55-57]. In the limit where correlations are so small as to be negligible [58], a site 
at position r is occupied if the occupancy variable u(r) is smaller than the occupation 
probability p(r); the variables u(r) are uncorrelated random numbers. To introduce 
correlation among the variables, we convolute the uncorrelated variables u(r) with a 
suitable power-law kernel [57], and define a new set of random variables ~/(r) with 
long-range power-law correlations that decay as r -~, where r = Ir[. The assumption of 
power-law interactions is motivated by the fact that the "decision" for a development 
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unit to be placed in a given location decays gradually with the distance from an occu- 

pied neighborhood. The correlation exponent ~ is the only parameter to be determined 
by empirical observations. 

To discuss the morphology of a system of cities generated in the present model, we 

show in Figs. 8 and 9 our simulations of  correlated urban systems for a fixed value of 

the density gradient 2, and for different degree of correlations. The correlations have 
the effect of  agglomerating the units around a urban area. In the simulated systems 

the largest city is situated in the core, which is regarded as the attractive center of 

the city, and is surrounded by small clusters or "towns". The correlated clusters are 

nearly compact near their centers and become less compact near their boundaries, in 

qualitative agreement with empirical data on actual large cities such as Berlin, Paris 

and London (see, e.g., Refs. [50, 59]). 

So far, we have argued how correlations between occupancy probabilities can account 

for the irregular morphology of towns in a urban system. As can be seen in Fig. 10, the 

towns surrounding a large city like Berlin are characterized by a wide range of sizes. 

We are interested in the laws that quantify the town size distribution N(A), where A 

is the area occupied by a given town or "mass" of the agglomeration, so we calculate 
the actual distribution of the areas of the urban settlements around Berlin and London, 

and find that for both cities, N(A)  follows a power law. 

This new result of a power-law area distribution of towns, N(A), can be understood 

in the context of our model. Insight into this distribution can be developed by first 
noting that the small clusters surrounding the largest cluster are all situated at distances 

r from the CBD such that p(r)  < Pc or r > rf. Therefore, we find N(A), the cumulative 

area distribution of clusters of  area A, to be 

Pc 

= / n ( A ,  p ) d p  ~ 14 -('~+l/dfv). (4) N(A)  
, I  

o 

Here, n(A,p)  ~ A-~o(A/Ao) is defined to be the average number of  clusters contain- 

ing A sites for a given p at a f ixed distance r, and • = 1 + 2/df. Here, Ao(r) 
[ p ( r ) -  pc] -dfv corresponds to the maximum typical area occupied by a cluster 

situated at a distance r from the CBD, while 9(A/Ao) is a scaling function that 
decays rapidly (exponentially) for A > A0. The exponent v = v(c¢) is defined by ~(r) 
] p ( r ) -  pcl -v, where ~(r) is the connectedness length that represents the mean 

linear extension of a cluster at a distance r > rf from the CBD. 

) 

Fig. 8. Simulations of urban systems for different degree of correlations. Here, the urban areas are red, and 
the external perimeter or urban boundary of the largest cluster connected to the CBD is light green. In all 
the figures, we fix the value of the density gradient to be 2 = 0.009. (a) and (b) Two different examples of 
interactive systems of cities for correlation exponents c~ = 0.6 and ~ = 1.4, respectively. The development 
units are positioned with a probability that decays exponentially with the distance from the core. The units 
are located not randomly as in percolation, but rather in a correlated fashion depending on the neighboring 
occupied areas. The correlations are parametrized by the exponent ~. The strongly correlated case corresponds 
to small ~ (c¢ ~ 0). When cc > d, where d is the spatial dimension of the substrate lattice (d - 2 in our 
case), we recover the uneorrelated case. Notice the tendency to more compact clusters as we increase the 
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Fig. 8. continued. 
degree of correlations (~ --~ 0). (c) As a zeroth-order approximation, one might imagine the morphology 
predicted in the extreme limit whereby development units are positioned at random, rather than in the 
correlated way. The results for this crude approximation of a noninteractive (uncorrelated) system of  cities 
clearly display a drastically different morphology than found from data on real cities. The noninteractive limit 
looks unrealistic in comparison with real cities, for the lack of interactions creates a urban area characterized 
by many small towns spread loosely around the core. 
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(a) (b) 

Fig. 9. The population distributions of Berlin and surrounding town from the years 1875, 1920, and 1945 
(left column, top to bottom) resemble those in an urban growth model based on correlated percolation (right 
column). 

6. Modeling DNA evolution and economics 

The question arises whether these long-range correlations in noncoding DNA se- 
quences and the entire chromosomes are the simple consequence of patches of DNA 
with different nucleotide concentration [60]. Indeed, how can power-law correlations 
arise in the one-dimensional system such as DNA, where correlations should decay ex- 
ponentially with distance between nucleotides in analogy with spins of one-dimensional 
Ising Model? One of the possible answers to this question is the duplication-mutation 
model of DNA evolution suggested by Li [61]. 
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Fig. 10. Log-log plot of the area distribution N(A) of the actual towns around Berlin and London. We first 
digitize the empirical data. Then we count the number of towns that are covered by A sites, putting the 
result in logarithmically spaced bins (of size 1.2 k, with k = 1,2,..., 15), and averaging over the size of the 
bin. A power-law is observed for the area distributions of both urban systems. The dotted line shows the 
predictions of our model for the uncorrelated case (slope = 2.45), while the dashed line gives results for 
the strongly correlated case (slope = 2.06). Note that the area distributions for both cities agree much better 
with the strongly correlated case (~ ~ 0). 

In this model  the time axes serves as an additional spatial dimension which connects 

distant segments of  DNA which have been developed from a single ancestor. 

The model is based on two assumptions both of  which are biologically motivated: 

(1) Every nucleotide can mutate with a certain probability. 

(2)  Every nucleotide can be duplicated or deleted with a certain probability. 

The first phenomenon is known as point mutation which can be caused by random 

chemical reactions such as methylation [62]. Second phenomenon often happens in the 

process o f  cell division (mitosis and myosis)  when pairs of  sister chromosomes ex- 

change segments of  their DNA (genetic crossover). I f  the exchanging segments are of  

identical length the duplication does not happen. However, if  two segments differ in 

length by n nucleotides, the chromosome that acquires larger segment obtains an extra 

sequence o f  length n which is identical to its neighbor, while another chromosome 

loses this sequence. Thus a tandem repeat of  length n appears on one o f  the sister 

chromosomes. In many cases duplications can be more evolutionary advantageous than 

deletions. In this case lengthy tandemly repeated regions will emerge from a single 

repeat. For simplicity we will start with a model similar to the original model of  

Li [61] which neglects deletions and deals with duplication o f  single nucleotides 

(n = 1 ). Next we will discuss the implications o f  deletions. 
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Fig. 11. (a) Schematic representation of the most simple example of duplication-mutation process proposed 
by W. Li. Originally the sequence consists of only one nucleotide A. At any time step, represented by 
a certain horizontal level of the tree each nucleotide duplicates and some of them mutate with probability 
pm "~ 1. Mutation events are shown by dashed lines. For simplicity we assume only two nucleotides A and T . 
The DNA walk representation of the obtained sequence is shown below the tree. (b) Analogous plot for 
the structure of a firm. Dashed lines correspond to modifications of the "bosses" decisions by lower level 
management. To total change in sales can be calculated by adding changes ui of each branch of a firm listed 
below the tree. 

Schematical ly ,  this mode l  can be illustrated by Fig. 11. Each level  o f  the tree-l ike 

structure represents  one step o f  evolu t ion  process  during which  each nucleot ide  a lways 

duplicates and with probabil i ty  Pm also mutates. For  s implici ty  we assume only  two 

types o f  nucleot ides  a and b (say purine versus pyr imid ine)  each o f  which  is represented 

by a step up or  down in the D N A  walk  representation. Af te r  k steps, this process  will  

lead to a sequence o f  2 k nucleot ides  which is represented by D N A  landscape, shown 
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below. The total excess o f  purines over pyfimidines 

2 k 

Ay = y~ui ,  (5) 
i~l 

is equal to the difference in heights of  the starting and the ending points of  the walk. 

In the following we compute explicitly the correlation 

C(~)  = (IdiUi+d) ( 6 )  

between nucleotides which are d nucleotides apart from each other along the resulting 

sequence. The reason why the correlations are now long-range is obvious. Indeed, the 

nucleotides which are ( = 2 k' apart from each other in space are only 2k' apart from 

each other in time, since they are both descendants o f  one common ancestor U = log 2 d 

generations before. The correlation decay exponentially with k'  and hence as a power 

law of  d. 

Simple calculations yield 

Thus 

(uiui+, ~) . . . .  ( 1 2p m )2k' {2 ln(1-2p,, )/In 2 . (7) 

2 ln(1 - 2pro) 
7 = ln2 ' (8) 

and, using (5), 

I ln(1 - 2pm)l 
= 1 In 2 (9) 

Note that 0¢ --- 1 when Pm= 0 and ~ becomes ½ when P m >  ½(1 -- 1/V'2). 

In general, when the deletions might occur with some probability Pa < ½, the number 

of  descendants o f  one common ancestor grows as z k' where z = 2(1 - Pa) and k' is 

the number of  generations. 

Thus, replacing ln2 by ln z in the denominators o f  expressions (8) and (9), we get 

21n(1 - 2pm) 21n(1 - 2pm) 
7 -  l n ( 2 -  2pa) ' a = 1 l n ( 2 -  2pa) ' (10) 

More rigorous but less evident approach of  recursion relations among levels of  the tree 

lead to the same analytical results - see Eqs. (8 ) - (10) .  

Similar arguments can be applied for computation of  ~ in more complex situations 

when more than one nucleotide can duplicate and all four types of  nucleotides are 
present, however simple analytical results in this case are not available. 

In summary, the model suggested by Li may lead under reasonable assumptions to 

the experimentally observed values o f  a which are in the range between 0.5 and 1. In 

the next section, we show how this model can be applied to the study of  an economic 
system. 
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7. Scaling in economics 

Another seemingly unrelated phenomenon is the behavior of industrial firm sales or 

their employment. We have studied the dependence of the fluctuations of the annual 
firm growth rates on the initial size of  the firm [11]. 

Specifically, we studied all US manufacturing publicly traded firms within the years 

1975-1991. The data were taken from the Compustat database and all values for sales 

have been adjusted to 1987 dollars by the GNP price deflator. We define a firm's 

annual growth rate as R = S1/So, where So and $1 are its sales in two consecutive 
years. 

It is customary to study firm growth on logarithmic scales, so we define r ~ ln(S1 ~So) 
and so - ln S0 and calculate the conditional distribution p(rlso ) of growth rates r with 
a given initial sales value so. 

The distribution p(rlso) of the growth rates from 1990 to 1991 is shown in Fig. 12(a) 
for two different values of  initial sales. Remarkably, both curves display a simple "tent- 

shaped" form. The distribution is not Gauss±an - as expected from the Gibrat model - 
but rather is exponential, 

P(rls°) - v~(so----~) exp a(s0) " (11) 

The straight lines shown in Fig. l(a) are calculated from the average growth rate Y(s0) 

and the standard deviation a(so) obtained by fitting the data set to Eq. (11). 
We also find that the data for each annual interval from 1975-1991 fit well to 

Eq. (11), with only small variations in the parameters Y(s0) and a(so). To improve the 
statistics, we therefore calculate the new distribution by averaging all the data from 
the 16 annual intervals in the database. As shown in Fig. 12(b), the data now scatter 

much less and the shape is well described by Eq. (11 ). For this reason, we have also 
included in the figure data for "volatile" cases, corresponding to sales of only about 
2.6 x 105 dollars. 

As is apparent from Fig. 12(b), a(so) decreases with increasing So. We find a(s0) 
is well approximated over more than seven orders of magnitude - from sales of less 
than 104 dollars up to sales of more than 1011 dollars by the law 

tr(s0) = a exp(-fls0) = aSo [~, (12) 

where a -~ 6.66 and fl = 0.15 + 0.03 (Fig. 13). 
We performed a parallel analysis for the number of employees, and the correspond- 

ing standard deviation is shown in Fig. 13. The data are linear over roughly five orders 
of magnitude, from firms with only ten employees to finns with almost 106 employ- 
ees. The slope fl = 0.16 4-0.03 is the same, within error bars, as that found for 
sales. 

We find that Eqs. (11) and (12) accurately describe three additional indicators 
of  firm growth (Fig. 14): (i) cost of  goods sold (with exponent fl = 0.16 ± 0.03) 
(ii) assets (fl = 0.17-+-0.04) and (iii) property, plant and equipment (fl = 0.18 ±0.03). 
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Fig. 12. (a) Probability density p(rlso) of the growth rate r ~ ln(Si/So) from year 1990 to 1991 for all 
publicly traded US manufacturing finns in 1994 Compustat with standard industrial classification index of 
2000-3999. We examine 1991 because between 1992 and 1994 there are several finns with zero sales that 
either have gone out of  business or are "new technology" firms (developing new products). We show the 
data for two different bins of  initial sales (with sizes increasing by powers of  4): 411'5 < S O < 412.5 and 
4 t4"5 < So < 415"5. Within each sales bin, each firm has a different value of R, so the abscissa value is 
obtained by binning these R values. The solid lines are fits to Eq. ( 11 ) using the mean F(so) and standard 
deviation a(so) calculated from the data. (b) Probability density p(rlso) of  the annual growth rate, for three 
different bins of  initial sales: 48.5 < So < 495, 4115 < So < 4125, and 4145 < So < 4155. The data were 
averaged over all 16 1 yr periods between 1975 and 1991. The solid lines are fits to Eq . ( l l )  using the mean 

F(so) and standard deviation tr(s0) calculated from all data. 
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Fig. 13. Standard deviation of the 1 yr growth rates of the sales and of the 1 yr growth rates of the number 
of employees as a function of the initial values. The solid lines are least-square fits to the data with slopes 
fl = 0.15 4- 0.03 for the sales and fl = 0.16 ± 0.03 for the number of employees. We also show error bars 
of one standard deviations about each data point. These error bars appear asymmetric since the ordinate is 
a log scale. 

What is remarkable about Eqs.(11 ) and (12) is that they govem the growth rates of  a 

diverse set of  firms. They range not only in their size but also in what they manufacture. 

The conventional economic theory of  the firm is based on production technology, which 

varies from product to product. Conventional theory does not suggest that the processes 

governing the growth rate o f  car companies should be the same as those governing, 

e.g., pharmaceutical or paper firms. Indeed, our findings are reminiscent o f  the concept 

o f  universality found in statistical physics, where different systems can be characterized 

by the same fundamental laws, independent of  "microscopic" details. 

Scaling phenomena of  the sort that we have uncovered in the sales and employee dis- 

tribution functions are sometimes represented graphically by plotting a suitably "scaled" 

dependent variable as a function o f  a suitably "scaled" independent variable. I f  scaling 

holds, then the data for a wide range of  parameter values are said to "collapse" upon 

a single curve. To test the present data for such data collapse, we plot (Fig. 15) the 

scaled probability density Pscal = x /26(so)p(r l so )  as a function of  the scaled growth 

rates o f  both sales and employees rscal -= v ~ [ r -  Y(so)]/a(so). The data collapse 
upon the single curve Pscal = exp(-Irscall). Our results for (i) cost of  goods sold, 
(ii) assets, and (iii) property, plant and equipment are equally consistent with such 
scaling. 

The power-law dependence of  a(So) on So may have its origin in the internal struc- 

ture o f  each firm. In the simplest approach, one would assume that the sales So of  a 
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Fig. 14. Power-law dependence of standard deviation a(S)/S on initial size S for three quantities: (a) S 
denotes assets (slope of -0.18) ,  (b) S denotes cost of  goods sold (slope of -0 .16  and (c) S denotes 

property, plant, and equipment (slope of -0.18) .  
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Fig. 15. Scaled probability density Psca] -= 21/2~(so)p(r[so) as a function of  the scaled growth rate 
/'seal ~ 2 1 / 2 [ r -  F(so)]/a(so). The values were rescaled using the measured values of  F(so) and ~r(s0). 
Also we show the analogous scaled quantities for the number of  employees. All the data collapse upon the 
universal curve Pscal = exp(-[rscal[) as predicted by Eqs. (11) and (12). 

given company result from N independent units 

N 

S0 = Z ~ i .  

i=1 

(13) 

I f  the unit sales ~i have a typical average (~) = So/N and an annual variation ui 
independent o f  so, then the annual change in sales is 

N 

= ~ ui. AS 
i=1 

(14) 

In analogy with a random walk, a(So) would grow as ~ or since N is proportional 
] z ~ 1. to So as v/~0, thus giving ~ = ~ so that fl 1 - ~ The much larger value of  c~ that 

we find (~ ~ 0.8) indicates the presence of  strong correlations among the firm's units. 
We can model this phenomena by considering the tree-like hierarchical organization of  
a typical firm (see Fig. 1 l(b)) .  The root of  the tree represents the head of  the company, 

whose policy is passed to the level beneath, and so on, until finally the units in the 
lowest level take action. Each of  these units has an average sales value (() -- So/N 
and a corresponding typical fluctuation u. The number of  links connecting the levels 
will vary from level to level, but there is a value z which represents a certain average 
number of  links. Then the number of  units N is equal to z k, where k is the number 
of  levels. 
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What are the consequences of this simple model? Let us first assume that the head 
of the firm suggests a policy that could result in changing the sales of each unit by an 
amount u. If this policy is propagated through the hierarchy without any modifications, 
then the change in sales is simply AS = Nu = Sou/(~). Accordingly, a = 1, so fl = 

1 - - a = 0 .  
More realistically, the policy of the head can be modified (undergo "mutation") at 

each level of the firm management with a small probability Pm. Each unit is not only 
influenced by the policy of the head but also by other (external and internal) factors. 
An example is that different levels have different types of information. Managers at 
each level might deviate from decisions made higher up in the tree if other information 
suggests to them that another action is appropriate. Another reason for a modification of 
the policy is organizational failure, due either to poor communication or disobedience. 
For these reasons, we assume that each manager follows his supervisor's policy with 
a probability H, while with probability (1 - / 1 )  imposes an opposite policy for his 
subunits, i.e., he decreases the sales by an amount u instead of increasing them, or 
vice versa. Hence the sales of the entire firm becomes a random variable with a standard 
deviation that can be explicitly computed using recursion relations among the levels of 
the tree (see Fig. l l(b)). The result is a2(S0) = u2[4Zpm(1 - pm)(y  k - - Z k ) / ( y -  Z ) +  

yn], where y----z2(1 -2pm)  2 and k - - ln (So / ( ( ) ) / lnz .  For large k, the model predicts 
= 1 - [ I n ( 1  -2pm)[ / ln(z)  if z > 1/(1 -2pm)  2 and a = ½ otherwise [see Eq. (9)]. 
Remarkably, the hierarchical structure of the company (Fig. 1 l(b)) can be mapped 

exactly onto the diagram of the DNA mutations and duplications (Fig. l l(a)). Each 
level of the firm hierarchy corresponds to one generation of repeat family and each 
modification of the head decision by the lower level management corresponds to 
a mutation. Note that ~ the a(So) for firm sales is exactly F ( ( )  for DNA 

sequences. 
Our central results, Eqs. (11) and (12), constitute a test that any accurate theory 

of the firm must pass, and support the possibility [9] that the scaling laws used 

to describe complex but inanimate systems comprised of many interacting particles 
(as occurs in many physical systems) may be usefully extended to describe com- 
plex but animate systems comprised of many interacting subsystems (as occurs in 
economics). 
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