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Stratification instability in granular flows
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When a mixture of two kinds of grains differing in size and shape is poured in a vertical two-dimensional
cell, the mixture spontaneously stratifies in alternating layers of small and large grains, whenever the large
grains are more faceted than the small grains. Otherwise, the mixture spontaneously segregates in different
regions of the cell when the large grains are more rounded than the small grains. We address the question of
the origin of the instability mechanism leading to stratification using a recently proposed set of equations for
surface flow of granular mixtures. We show that the stable solution of the system is a segregation solution due
to size(large grains tend to segregate downhill near the substrate and small grains tend to segregesadphill
shape(rounded grains tend to segregate downhill and more faceted grains tend to segregateAspilesult,
the segregation solution of the system is realized for mixtures of large-rounded grains and small cubic grains
with the large-rounded grains segregating near the bottom of the pile. Stability analysis reveals the instability
mechanism driving the system to stratification as a competition between size segregation and shape segregation
taking place for mixtures of large cubic grains and small-rounded grains. The large cubic grains tend to size
segregate at the bottom of the pile, while at the same time, they tend to shape segregate near the pouring point.
Thus, the segregation solution becomes unstable, and the system evolves spontaneously to stratification.
[S1063-651%97)03312-9
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I. INTRODUCTION species does not depend on the size of the grains, and it is a
function of the shape of the grains: the rougher the grains the
One of the unusual properti¢$,2] of granular materials larger the angle of repose.
[3-8] is the size segregation of mixtures when they are ex- To describe the case of a single-species sandpile in a two-
posed to external periodic perturbations such as vibrations afimensional geometry, Bouchaud, Cates, Ravi, Prakash, and
rotations[9-15. Size segregation also occurs when a mix-Edwards(BCRE) [26,27] developed a novel theoretical ap-
ture of grains of different size is simply poured onto a heapyroach. They introduced two coarse-grained variables: the
[16-21): the large grains spontaneously segregate near thgca height of the sandpile, and the local “thickness” of the
bottom of the heap, whereas the small grains segregate N&@Ver of rolling grains, and a set of coupled equations to

the pouring point at the top of the heap. , govern the flow of the rolling grains and their interaction
Recently, it was showf22-25 that when a mixture com- with the sandpile. Recently, de Gennkzg] applied the

posed O.f grains differing not only in size but alsp in shape iS'BCRE formalism to the case of granular flows in a thin ro-
poured in a “granular Hele-Shaw cellltwo vertpgl sllabs. tating drum[29,30, and very recently Boutreux and de
separated by a gap5 r_nm), a spontaneous strat|f|cat_|on IS 55ennes(BdG) [8;1] t’reated the case of granular flows made
l(;t:szrvceudt;i CGr?Qiur:gr Srt?;:itfl;,reii (;fltesrr:::il;]roulgdgtrjs gor? Igrsn ;Ir_] of two species of different angles of repose. Makse, Cizeau,
9 g g ay nd StanleyMCS) [32,33 reproduced stratification and seg-

rounded and large cubic grains parallel to the surface of th&Nd ) di del and th : h
pile when they are poured in the cell. regation using a discrete model and the continuum approac

According to the experimenf@2], the control parameter developed by BAdG. They showed that a “kink” mechanism
for stratification appears to be the difference of the reposé32,33 describes the dynamics of stratification in agreement

angles of the pure species with experimental finding$22].
In this paper, we address the question of the origin of the
5= 00— 014, ) instability leading to stratification. We study analytically

segregation and stratification as observed2g| when the

where 6, is the angle of repose of the small grains, ah¢  tWo species have different size and different shéme in

is the angle of repose of the large grains. The stratificatiogeneral, different angle of repgs84,35. We use the con-
experiment$22] used a mixture of grains of different shapes tinuum approach of Bd@31], and MCS[32,33, to calculate
(small rounded or less faceted grains and large cubic or morthe steady-state solution of the equations of motion for sur-
faceted grains The repose angle of the smaller pure speciesace flow of granular mixtures. This solution shows the com-
is then smaller than the repose angle of the large purelete size segregation of the mixture with the large grains
species—i.e.>0. On the other hand, strong segregationbeing found at the bottom of the pile. We then study analyti-
but not stratification occurref22] when §<0 (correspond- cally the conditions under which the instability leading to
ing to a mixture of small cubic grains, and large-roundedstratification occurs. Stability analysis show that the steady-
graing [23]. We notice that the angle of repose of the purestate solution is stable under perturbations only whet0,
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a) Size—segregation b) Shape-segregation 0(x,t) [or alternatively the height of the sandpifgx,t)]
which describes the static pha6ee., the grains which be-
long to the pile, and the local thickness of the layer of roll-

small cubic ing grains R(x,t) to describe the rolling phasé.e., the
grains that are not part of the pile but roll downwards on top
of the static phageBCRE also proposed a set of convective-
diffusion equation for the rolling grains, which was later
large rounded simplified by de Gennel28]:
FIG. 1. Two segregation effects acting when the grains differ in IR(X,t) _ IR +T(R.O 2
size and shapda) Size segregation: large grains tend to segregate a v X (R.0), @
at the bottom of the pilgb) Shape segregation: rounded grains tend
to segregate at the bottom of the pile. wherev is the downhill drift velocity of the grains alonyg,

assumed to be constant in space and in time. The interaction

while the segregation solution is unstalfleading to strati- termI” takes into account the conversion of static grains into

fication) when 6>0, in agreement with experimenid2]. rolling grains, and vice versa. The simplest form Iofis
The stratification instability can be seen as follows. Therd 26—28

are two segregation mechanisms acting when pouring a mix-

ture of grains differing in size and shape in a cell.

(i) Size segregation: large grains tend to segregate down ;
hill near the bottom of the pile, and small grains tend to'?—|ere 6 denotes the angle of repogthe maximum angle

. . . X ._below which a rolling grain is converted into a static grain
segregate uphill near the pouring point, since large grain

roll down easier on top of small grains than small grains orf26’27’37’3$' The ratey>0 has dimension of inverse time,
P 9 9 andv/ vy represents the length scale at which a rolling grain

ewiII interact significantly with a surface at an angle slightly
o 8hove or below the angle of repos28]. For notational con-

Wenience we do not consider the difference between the
angle and the tangent of the angle, i.e.,

I'(R,0)=7v[ 6(x,t) — 6, ]R(X,t). (3

top of the pile, and rounded grains segregate near the bott
since rounded grains roll down easier than cubic grifig.
1(b)].

Thus, when pouring a mixture of small cubic grains and Jh
large-rounded grains the segregation of the mixture results, o(x,t)y=— " 4
since the small cubic grains size segregate and shape segre-
gate near the top of the pile, and the large-rounded graim,;he equation foh(x,t) follows by conservation:
size and shape segregate near the bottom. This situation ’
gives rise to the steady-state solution of the system. ah(x,t)

On the other hand, the stratification process arises as a o~ T(RO). 5)
consequence of an instability mechanism. For mixtures of

large cgpic grains anq small—roungjed grains there exists. a Recently, BAG[31] have extended the BCRE formalism
competition between size segregation and shape segregatiqg.the case of two species. This formalism considers the two
Large cubic grains tend to size segregate at the bottom of thg 5| “gquivalent thicknesses” of the species in the rolling
pile, while at the same time, they tend to shape segregate ghaser (x,t) (i.e., the total thickness of the rolling phase

the top of the pile. Thus, the segregation solution becomeg, siplied by the local volume fraction of the grains in the
unstable, and the instability drives the system spontaneous%"mg phase at position), with «=1,2 respectively for

to strat|f|cat|on._ , small and large grains. The total thickness of the rolling
In the following we take up each of these results in tum'ghase is defined as

The paper is organized as follows. In Sec. Il we present th
theoretical formalism for surface flows of granular mixtures. R(X,t)=Ry(X,t) + Ry(X,1). (6)
In Sec. lll we calculate the steady-state solution of the prob-
lem. In Sec. IV we perform a stability analysis, and in Sec. VThe static phase is described by the height of the sandpile
we discuss the instability mechanism for stratification andh(x,t), and the volume fraction of static graims,(x,t) of
we propose a phase diagram for surface flows of granulafpe « at the surface of the pile. Heteis the longitudinal
mixtures in light of these results. coordinate, and the pouring point is assumed to be=ad,
and we consider a silo or cell of lateral size(see Fig. 2

The equations of motion for the rolling species f3é]

IIl. THEORY FOR SURFACE FLOW
OF GRANULAR MIXTURES IR, (X.1) iR,

The theoretical study of surface flows of granular materi- at “PaTx

als was triggered by the works of BCRE6,27] and Mehta

and collaborator$36]. In a recent theoretical study for the and the equation fon(x,t) follows by conservation:
case of a single-species sandpile BCR¥6,27 proposed

two coupled variables to describe the dynamics of two- dh(x,t) S (7h)
dimensional sandpile surfaces: the local angle of the sandpile ot vz

+l,, (7a)
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0,(0,)

e11<
61

FIG. 2. Diagram showing the variables used to describe the
granular flow of mixtures in a granular Hele-Shaw cell or two- 0 (¢2)
dimensional silo. o

Herewv , is the downhill convection velocity of species % |
alongx. The interaction ternt’,, takes into account the con- !
version of rolling grains of typer into static grains, and the :
amplification of static graing by rolling grains of typex or 921 }

B. T, is defined through a2 collision matrixM 4 (b) 0 1 0,

2
T (R, b,)= 2 M R (70) FIG. 3. Dependence of the generalized angle of repose for the
B=1 two types of rolling grains on the concentration of the surface of
large grainsg, for (a) >0, and(b) §<0, whereé is defined in
The elements of the collision matriM ., characterize the Eq.(1). We defined,, ;= 0,($z=1) [32].
interaction of a rolling grain of typ@ with a surface of static
grains of typea, and they are determined by the local angleof repose of each species to be independent on the surface
6(x,t), and the concentrationg,(x,t). The concentrations composition of the pile. A generalization of the minimal
of static grains at the surface of the pilg(x,t) are given by  model of[31] to include not only different surface properties
of the species but also different size of the species with small
b (X t)@: T (7d) size ratios @,/d;=<1.4) is considered ih35].

e ot “ Here, we use the BdG equations to study segregation as
well as stratification of mixtures of grains differing in size
and shape in a two-dimensional si{Big. 2). As in MCS

bi+ dy=1. (79 [32], we focus on the dependence of the repose angle of
every species on the composition of the surfecéx,t). We
The canonicalform of the collision matrix is defined by use the following definitions of collision function82]:
taking into account a set of binary collisions between a roll-
ing and a static graifid1,39: aa(0)="7aall[0(X,1) = 0, (bp) ],

o _|a(@)di-bi(0)  xo(6)s " b“(z)jng[;}“(fﬁ)_;e(x’t)]’ .
X0, aql0)dy—by(0)] Xl OV = palILOOCO = 05( D)) %2

This definition involves a set ad priori unknown collision ~ Where

functions contributing to the rate processeg; ) is the con- )
tribution due to an amplification procefise., when a static . 0 if x<0
grain of type«a is converted into a rolling grain due to a H[x]}= X if x=0.
collision by a rolling grain of typex), b,(6) is the contri-

bution due to capture of a rolling grain of type(i.e., when Here, the rates arg,,>0, and the generalized angle of
arolling grain of typea is converted into a static graiind  reposed,(¢ ) of a a type of rolling grain is a continuous
X,(0) is the contribution due to a cross-amplification processynction of the composition of the surfaegy [32] [see Fig.

(i.e., the amplification of a static grain of tyg@ due to a 3 where we also defing,; as 6,(¢p) for ¢z=11:
collision by a rolling grain of typex).

and

(9b)

BdG [31] used a “minimal” form _of the collision matrix 01(dy) =Myt 017,
to calculate the steady-state solution in the geometry of a _ _
two-dimensional silo for the case of mixtures of grains dif- 02(Pp2) =Mepp+ 621= —Mepy + b5, (10

fering only in angle of repose. This solution shows a com- ]
plete segregation at the low edge of the silo, and near thi¢/herem= 61,— 61,= 6,— 6,;. We have assumed the differ-
point the concentrations of static grains show power-law be€nce

havior. In their model, they consider a constant cross-

amplification termx,,( #) = const, and they consider the angle = 61(b2) — 02(p2) 1)
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A =1, and we keepy,,# y»1. We seek a solution where the
bz(e) b,(8) al(e) profiles .of 'the sa}ndpile an_d o'f th_e rolling . grains do not
\\ 32(9) \\ change in time. Since stratification is an oscillatory solution,
\ stratification cannot be observed for the steady-state solution.
1\ m,(0) We set
'Yzz \ /‘,
oh RO
VT (133
0,(0,) 0,(9,) 6
and
FIG. 4. Schematic plot of capture,(6), amplificationa,(6),
and cross amplificatior,(6) functions used in the definition of the IR(X)
present model. These functions are expected to be continuous in a ot =0, (13b

region near the angle of repogsas shown by the thin curves

However, when the ratio between the size of the grains is not closgiith boundary conditionsR,(x=0)= ng and R, (x=L)

to 1, theny= 0,(d,) — 62(p5) is large enough so we can approxi- =0, andR%= R2+ Rg.

mate these functions by the forms shown in this figure. We first calculate the profile of the total rolling species

R(X) =R1(X) + Ry(x). From Eqs(7a), (7b), and(13) we ob-
to be independent of the concentratidp We notice that the ta(in) 1)+ Re(x) as{7a). (70 (13

fact that grains 1 are smaller than grains 2 implies

01(¢2) > 0,(,) for any given concentratiob, (i.e., the IR(X)
small grains are always the first to be capturdde angular 0= a Y
difference ¢ is thus determined by the difference in size

between the grains; the larger the size difference the largego that the profile of total rolling species decays linearly with
. Moreover, the fact that the grains have different shapes,

implies 61,# 6,, (for instanced; ;< 6,, when the grains 1 are

IR(X) RO
o,

ox L

(14

RO

more rounded than the grains 2).
The collision matrix includes the following proces$84|
(Fig. 4.

(a) Capture, b,(#). Rolling grains are captured if the lo-

R(x):T(L—x). (15

From Egs.(7d), (12), and(13a we obtain the concentra-

cal angle of the sandpilé(x,t) is smaller than the general- tions

ized repose anglé,(¢;). The capture is proportional ®,,
[40].

(b) Amplification a,(0). If the local angled(x,t) is larger
than the generalized repose anglg ¢;), then some static

grains of typea will be converted into rolling grains due a

collision by rolling grains of typex. The amplification rate is
proportional to the concentratiog, in the sandpile, and to
R,.

(c) Cross amplificationxz( #). When static grains of type
a are amplified by rolling grains of typg. This cross-
amplification occurs when the local angéx,t) is larger

than 05(p).
Equation(7a now reads

IR, IR,

ot = _UQW—F ‘yaaH[e(Xit)_ 6a(¢ﬂ)]¢aRa

- 'Yaan[ 001( d)ﬁ) - H(X,t)]Ra
510060 — 04 bg) | bR

(12

Ill. STEADY-STATE SOLUTION

We now calculate the steady-state solution of the equa-
tions of motion for the two-species sandpile including the

terms corresponding to cross amplificatidn,;, a+ g,
which were not considered i82].

We consider the geometry of a silo of lateral siz€Fig.
2). We assume that the differenae= 61(d,) — 0:(p5) is
independent of the concentratiog,, then ¢=6,,— 05,
= 01,— 05, (see Fig. 3 We setvi=v,=v, and y;1= ¥

Y[ 61( o) — 0(X)IR1(X)
vRY/L+ YII[ 0= 01]1Ry(X) + Y2l 1[ 6— 6,]Rx(X)
(169

$1(x)=

YIL[ 02( o) — B(X) IRo(X)

VRO/L+ yII[ 60— 05]R5(X) + y1oII[ 6— 6,]R1(X)
(16b)

ho(X)=

The equations for the rolling species in terms of the con-
centrations are obtained from Edga), (7d), and(13):

IR, (X)
Ix

== (VRL) pa(X). 17

v

Next, we divide the calculations in two regions: region A,
where 6,(¢,)<0<6:(¢>), and region B, where
0<6,(,)<0,(,) [see Fig. B)]. The steady-state solu-
tion of Egs.(7)—(9) shows a strong segregation pattern.

Region A At the upper part of the pile we find that
only small grains are preserfor 0<x<x,, with X
=RIL/RO—v/(y), see below
If 6,<6#<80,, from (16) we obtain[41]

$1(x)=1, $(x)=0.

Using Eqgs{(17) and(18) we find the profiles of the rolling
species

(18

0

Ry (x)=R?— Rrx, Ry (x)=R. (19
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The profile of the sandpile is obtained from E¢gb), (12),

and(139:

RO

_ UT = [ 6(X) = 011]R1(X) + Y21 0(X) — 01]Rx(X),

so that

—vly— yuLRI(yRO)

0(x) — 011=

This solution is valid wherd(x) > 6,(¢$,=0)=6,,. Then it

is valid for x<x,,, wherex, is

Region B At the lower part of the pile X,,<x=<L), we
find that, after a small region of the orderwf(yy), mainly

large grains are present.

L LRI+ Ryl y)/RO—x

(20

(21)

(22

If #<6,<6,, from Egs.(7b), (12), and (133 we obtain

0

R
_ UY_L =[0(X) — 01(h2) IRL(X) +[ B(X) — O2( ) IRx(X),

and therefore

—vRY(yL)+ Ry (x)

0(x)— 0x(po)= R(X)

Inserting Eq.(24) in Eq. (16) we obtain the concentrations as

a function of the rolling species

R1(X) L
$100= R | 1+ &Rz(x)

R, (X) L
ba(X)= RZ(X) —%Rl(x) .

(23

(29)

(253

(25b)
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whereC is an integration constant. By considering the con-

tinuity atx=Xx,,, we obtainC=R3L/(R°r) [42]. The profile

of the pile is obtained from Eq$24) and (10):

YR (X)L/IR®—v/y
(L—x)

O(X) = 5= —Mep1(X) + (29

We notice that the paramete=v/(yy) is expected to be
of the order of the size of the grains, so for large system size
r<L, andC>1. Then the steady-state solution can be sim-
plified, and we arrive to the following simpler forms when
also considering that, as in the experiment, an equal volume
mixture is usedi.e., R{=R9=R%/2).

Region A Valid for 0sx<x,,=L/2—v/(y¥):

¢1(X): 11 ¢2(X):O! (30@

RO
R0=R{5- 1) Ra=%. (o

—vly—dynll(2y)

0= =y Tyl —x 209
Region B Valid x,<x<L:
¢1<x>=ex;{ - 77‘#(x—xm> , (319
Ry(x)= ¢L = p1(0R(X), (31b)
B(X) — Bp3= — My (X) = —— (310

y(L=x)"

Figure 5 shows the profiles of the steady state solution for
typical experimental values. We use a cell of dize 30 cm.
In [43] the values of the different phenomenological coeffi-
cients appearing in the theory were measured for a typical
equal-volume mixture consisting of quasispherical glass
beads of mean diameter 0.27 mm, and cubic-shaped sugar
grains of typical size 0.8 mm. The mean value of the velocity
of the grains falling down the slope is of the ordes=10
cm/sec. The rateyr was also estimated i3] to be of the

We obtain the equations for the rolling species using Eqserder of y=20/sec. A typical value of the thickness of the

(17) and (25):

IRy(X) Rl(X)/R_O Ra(X)
x R \L r
IRH(X) Rz(X)/R_O_ Rq(x)
x  RXx)\L r
where r=v/(yy). Settingu=R;/R we obtain from Eg.
(263
ru’=—(1-uu,
and the solution is
Ri(x) 1

R(x) 1+C exg(x—xy)/r]’

(263

(26b)

(27)

(28)

layer of rolling grains isR°=0.25 cm[44]. The difference
tany = tand,,—tand,, is of the order of 0.+ 0.3[45].

The concentration§Fig. 5b)] show the strong segrega-
tion of the mixture; the mixing of the species is concentrated
only in a small region, of the order af/(ytany)=1.5-5
cm, in the center of the pile. The top part of the pile is made
of small grains so that the angle is approximately equal to
011 [Fig. 5(c)]. Towards the center of the pile the angle de-
creases and it is equal #); at x=X., (6,, is the angle at
which large grains start to be captured on top of small
graing. Then the angle increases gradually &g towards
the lower part of the pile made of large grains. The profile of
R(x) [Fig. 5@] behaves linearly witkx, which is a result of
the conservation of number of grains Efj39. Same depen-
dence is observed in the case of a single-species sandpile
[28]. The exponential behavior of the concentrations and
rolling speciesR,(x) with a characteristic decay length of
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FIG. 5. Steady-state solutiof80), (31) for the two-species

7013
(a) 6>0 (b) <0
initial segregation initial segregation
regime 0 regime

segregation

first layer of large remains stable

grains appears on

Region A
& .
mixing
. small
R;glon cubic \(
. Regio Lo large
B rounded

oscillations start:
stratification

FIG. 6. Schematic process leading(® stratification (>0),
and (b), segregation §<0).

generalized angle of repose for a given concentratign
Then, this solution shows the size segregation of the mixture.

IV. STABILITY ANALYSIS

In the experiments of22], it was found that there is a
transient regime of segregation before the layers appear. The
initial segregation regime turns into stratification only for
mixtures with §>0 [Eq. (1)]. At the onset of the instability
leading to stratification, it is observed that a small amount of
large grains is captured on top of the region of small grains
near the center of the pilgregion A, see Fig. @]. This
leads to the appearance of the first layer of larger grains and
then to the oscillations characteristic of stratification. On the
other hand, if6;,>6,, (6<0) the segregation profile re-
mains stabléFig. 6(b)]. This picture was also confirmed by
the models proposed {182].

The first sublayer of large grains corresponds to the ap-
pearance of the first “kink”[32,33. The kink is an uphill
wave at which the rolling grains are stopped. This first
“kink” is formed only of large grains(as was observed in

granular flow in a silo geometry. We use the following typical [22] and[32]). This kink appears to move uphill and creates
experimental values for the phenomenological constants appearir@? incipient layer of large grains. Then the newly arriving

in the theory{45]: L=30 cm, tam®,;= 0.6, tard,»,=0.5, tany=0.2,
tarm=0.1, tand=—0.1, R°=0.25 cm,v =10 cm/sec,y=20/sec,
andy,,;=10/sec(a) Profiles of the rolling speciegb) Profile of the

concentrations(c) Profile of the sandpile.

grains roll down to the bottom of the pile where a new kink
is developed. At this point, the kinKkormed by large and
small grain$ starts to move upwards and all grains are
stopped at the kink, but the small-rounded grains are stopped
first so that the result is a pair of layers with the small-
rounded grains being found underneath the large cubic

o, near the center of the pile is expected, since we argrains.

solving equations of the typ#R,, /dx~ — (yylv)R,(X). We
notice that the segregation soluti¢80) and (31) is deter-
mined by the fact tha#,(¢5) > 0,(¢>), i.e., by the fact that

Next, we analyze the stability of the steady-state solution
under perturbations, by assuming that the steady-state solu-
tion obtained in Sec. Il is valid for the initial transient re-

the small grains are trapped first since they have a largagime of the evolution. We perturb the steady-state profiles by
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(a) 0 < 0: Grains1 : small and cubic (empty)
Grains II: large and rounded (solid)

stable
segregation

(b) O > 0: GrainsI: small and rounded (empty)
Grains II: large and cubic (solid)

unstable
segregation =
stratification

size—segregation shape—segregation

FIG. 7. The instability mechanism for stratification is a result of
two competing segregation effects. Size segregdfiost panels in

(a) and(b)], and Shape segregatipsecond panels ifa) and (b)].
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82922_91 1
A

d, /d;= 1, shape—segregation

S S Sy N

stratification
_d,

XK KPR AN

strong segregation

8=0, size—segregation

FIG. 8. Phase diagram for two-dimensional flows of granular
mixtures.d, is the size of the large graind, is the size of the small

(a) Stable segregation when the mixture is composed of Sma"'CUbi@rains, 0,, is the repose angle of the large grains, ahgis the

grains and large-rounded grains, diwl unstable segregation lead-

repose angle of the small grains. We distinguish the regions of

ing to stratification when the mixture is composed of small-roundeds;, ~tification and strong segregatiéas shown by the steady-state

grains and large-cubic grains.

solution presented hereWeak segregation is expected in the
shaded region when the size ratio is close to 1. This case is dis-

considering that a small amount of large grains has beeg,ssed if35).

captured in the region A, near the center of the piesk,,,),

without changing the angle of the pile. We then analyze the, 5ing and then to stratification according to the experimental
short-time evolution of this perturbation to the steady-statehndingS [22]. On the other hand, wheB<0, Ry(x,t) in-

profile. The dynamical evolution of the additional large roll-

ing grains are now governed by the following equation:

Rt Rz (60— 0,9)R (32
g Uax Y 2272,

where the repose angle of the large rolling graing,issince

the surface is made only of large grains.

We are interested in the behavior of the profiles near th
center of the pile, wher&; is very small, so we can focus
only on the behavior of the large grains. We look for the
short-time behavior oR,, so we can assume that the angle
of the pile remains unchanged from its initial value. Then we
replaced(x,t) in Eq. (32 by 6(x) given by the steady-state

solution(21), and we arrive at the following equation:

!

IR,(X,1) _ IR,

+
at _UW_(V‘” %) Ra(x,t), (33

wherev’ = y,»LRYRC, and/=L(R+RJy,,/v)/RC. The
solution of Eq.(33) is

Ry(x,t)=(/—x)%e” 7", (34

with o=(v+v')/v.
According to the exponential fact@™ " in Eq. (34),
R>(x,t) decreases as a function of time whém0. This

creases as a function of time, so that the large grains of the
initial perturbation are amplified, the perturbation disappears,
and the segregation profile remains stable.

V. STRATIFICATION INSTABILITY

The steady-state solution calculated in Sec. Il shows the

Size segregation of the mixture, while the stability analysis of

Sec. IV shows that the grains also shape segregate according
to the value ofs. The stable steady-state solution is achieved
when the mixture is composed of small cubic grdigsins

| in Fig. 7(@)] and large-rounded graifgrains Il in Fig.

7(a)]. In this case, the segregation of the mixture results be-
cause size and shape segregation act simultaneously to seg-
regate the large-rounded grains at the bottom and the small
cubic grains at the top. On the other hand, when pouring a
mixture of small-rounded graingrains | in Fig. 7b)] and

large cubic grainggrains Il in Fig. 1b)] an instability devel-

ops since the size segregation and shape segregation mecha-
nisms tend to segregate the same grain in opposite regions of
the cell.

Qualitatively, the onset of the instability can be seen as
follows. If a small amount of large grains is captured near the
center of the pile where the angle of the pileis 6,4 (point
A'in Fig. 3), then the repose angle for additional large rolling
grains is 6,,. Thus, if 6=6,,<0,, [point B in Fig. 3a)],

implies that more large grains are captured, and the perturnore large grains can be trappésince the angle of the
bation of large grains evolves into the first sublayer of largesurface is smaller than the repose aphgleading to the first
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kink of large grains and then to stratification. On the othermpile. In the center of the pile we find a region of mixing
hand, the perturbation of large grains disappears wi*efl.  where the concentration profiles behave exponentially with a
Since 6=0,,> 05, [point C in Fig. 3b)], no more large characteristic region of mixing given hy (y). This region
grains are captured, the fluctuation disappears, and the segan be of the order of 1:55 cm and is observed experimen-
regation profile remains stable. tally. We also find that the steady-state solution is stable
In light of these results we propose the phase diagranunder a perturbation involving large grains trapped at the
shown in Fig. 8. The model presented here predicts a regiogenter-top of the pile, whed<0 (corresponding to large
of stratification (¢>0), and a region of strong segregation grains less faceted than small grair®n the other hand, the
(8<0) for size ratios not close to one. In Fig. 8 we show thesteady-state solution is unstable under the same perturbation
results of numerical integration of the equations of motionwhen §>0 (corresponding to large grains more faceted than
using the following parameters. Stratificatio®=0.25, small graing. The stratification instability is related to the
$=0.3, Y11= ¥2o=1, y15=y,1=0.1, v1=v,=1, R(f:Rg fact that, whens>0, there appears a competition between
=0.5, and segregation: the same parameters except fgize segregation and shape segregation: the large-cubic
6=—0.1. For other parameters such as#v,, different grains tend to size segregate at the bottom of the pile, while
Yapg» OF 015~ 0117 0~ 6,1 We obtain similar results. In ad- at the same time, they tend to shape segregate at the top of
dition, when the cross-amplification ratgg, are of the or-  the pile. Thus, the segregation solution becomes unstable,
der of the amplification rateg,, we also find oscillations in and the system evolves spontaneously to stratification.
the center of the pile which decay exponentially wti#n0.
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