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Stratification instability in granular flows

Hernán A. Makse
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When a mixture of two kinds of grains differing in size and shape is poured in a vertical two-dimensional
cell, the mixture spontaneously stratifies in alternating layers of small and large grains, whenever the large
grains are more faceted than the small grains. Otherwise, the mixture spontaneously segregates in different
regions of the cell when the large grains are more rounded than the small grains. We address the question of
the origin of the instability mechanism leading to stratification using a recently proposed set of equations for
surface flow of granular mixtures. We show that the stable solution of the system is a segregation solution due
to size~large grains tend to segregate downhill near the substrate and small grains tend to segregate uphill! and
shape~rounded grains tend to segregate downhill and more faceted grains tend to segregate uphill!. As a result,
the segregation solution of the system is realized for mixtures of large-rounded grains and small cubic grains
with the large-rounded grains segregating near the bottom of the pile. Stability analysis reveals the instability
mechanism driving the system to stratification as a competition between size segregation and shape segregation
taking place for mixtures of large cubic grains and small-rounded grains. The large cubic grains tend to size
segregate at the bottom of the pile, while at the same time, they tend to shape segregate near the pouring point.
Thus, the segregation solution becomes unstable, and the system evolves spontaneously to stratification.
@S1063-651X~97!03312-6#

PACS number~s!: 81.05.Rm, 05.60.1w
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I. INTRODUCTION

One of the unusual properties@1,2# of granular materials
@3–8# is the size segregation of mixtures when they are
posed to external periodic perturbations such as vibration
rotations@9–15#. Size segregation also occurs when a m
ture of grains of different size is simply poured onto a he
@16–21#: the large grains spontaneously segregate near
bottom of the heap, whereas the small grains segregate
the pouring point at the top of the heap.

Recently, it was shown@22–25# that when a mixture com
posed of grains differing not only in size but also in shape
poured in a ‘‘granular Hele-Shaw cell’’~two vertical slabs
separated by a gap'5 mm!, a spontaneous stratification
observed. Granular mixtures of small-rounded grains
large cubic grains stratify in alternating layers of sma
rounded and large cubic grains parallel to the surface of
pile when they are poured in the cell.

According to the experiments@22#, the control paramete
for stratification appears to be the difference of the rep
angles of the pure species

d[u222u11, ~1!

whereu11 is the angle of repose of the small grains, andu22
is the angle of repose of the large grains. The stratifica
experiments@22# used a mixture of grains of different shap
~small rounded or less faceted grains and large cubic or m
faceted grains!. The repose angle of the smaller pure spec
is then smaller than the repose angle of the large p
species—i.e.,d.0. On the other hand, strong segregati
but not stratification occurred@22# whend,0 ~correspond-
ing to a mixture of small cubic grains, and large-round
grains! @23#. We notice that the angle of repose of the pu
561063-651X/97/56~6!/7008~9!/$10.00
-
or
-
p
he
ear

s

d

e

e

n

re
s
re

d

species does not depend on the size of the grains, and it
function of the shape of the grains: the rougher the grains
larger the angle of repose.

To describe the case of a single-species sandpile in a
dimensional geometry, Bouchaud, Cates, Ravi, Prakash,
Edwards~BCRE! @26,27# developed a novel theoretical ap
proach. They introduced two coarse-grained variables:
local height of the sandpile, and the local ‘‘thickness’’ of th
layer of rolling grains, and a set of coupled equations
govern the flow of the rolling grains and their interactio
with the sandpile. Recently, de Gennes@28# applied the
BCRE formalism to the case of granular flows in a thin r
tating drum @29,30#, and very recently Boutreux and d
Gennes~BdG! @31# treated the case of granular flows ma
of two species of different angles of repose. Makse, Cize
and Stanley~MCS! @32,33# reproduced stratification and seg
regation using a discrete model and the continuum appro
developed by BdG. They showed that a ‘‘kink’’ mechanis
@32,33# describes the dynamics of stratification in agreem
with experimental findings@22#.

In this paper, we address the question of the origin of
instability leading to stratification. We study analytical
segregation and stratification as observed in@22# when the
two species have different size and different shape~or, in
general, different angle of repose! @34,35#. We use the con-
tinuum approach of BdG@31#, and MCS@32,33#, to calculate
the steady-state solution of the equations of motion for s
face flow of granular mixtures. This solution shows the co
plete size segregation of the mixture with the large gra
being found at the bottom of the pile. We then study analy
cally the conditions under which the instability leading
stratification occurs. Stability analysis show that the stea
state solution is stable under perturbations only whend,0,
7008 © 1997 The American Physical Society
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56 7009STRATIFICATION INSTABILITY IN GRANULAR FLOWS
while the segregation solution is unstable~leading to strati-
fication! whend.0, in agreement with experiments@22#.

The stratification instability can be seen as follows. Th
are two segregation mechanisms acting when pouring a m
ture of grains differing in size and shape in a cell.

~i! Size segregation: large grains tend to segregate do
hill near the bottom of the pile, and small grains tend
segregate uphill near the pouring point, since large gra
roll down easier on top of small grains than small grains
top of large grains@Fig. 1~a!#.

~ii ! Shape segregation: cubic grains tend to segregate
top of the pile, and rounded grains segregate near the bot
since rounded grains roll down easier than cubic grains@Fig.
1~b!#.

Thus, when pouring a mixture of small cubic grains a
large-rounded grains the segregation of the mixture res
since the small cubic grains size segregate and shape s
gate near the top of the pile, and the large-rounded gr
size and shape segregate near the bottom. This situa
gives rise to the steady-state solution of the system.

On the other hand, the stratification process arises a
consequence of an instability mechanism. For mixtures
large cubic grains and small-rounded grains there exis
competition between size segregation and shape segrega
Large cubic grains tend to size segregate at the bottom o
pile, while at the same time, they tend to shape segrega
the top of the pile. Thus, the segregation solution becom
unstable, and the instability drives the system spontaneo
to stratification.

In the following we take up each of these results in tu
The paper is organized as follows. In Sec. II we present
theoretical formalism for surface flows of granular mixture
In Sec. III we calculate the steady-state solution of the pr
lem. In Sec. IV we perform a stability analysis, and in Sec
we discuss the instability mechanism for stratification a
we propose a phase diagram for surface flows of gran
mixtures in light of these results.

II. THEORY FOR SURFACE FLOW
OF GRANULAR MIXTURES

The theoretical study of surface flows of granular mate
als was triggered by the works of BCRE@26,27# and Mehta
and collaborators@36#. In a recent theoretical study for th
case of a single-species sandpile BCRE@26,27# proposed
two coupled variables to describe the dynamics of tw
dimensional sandpile surfaces: the local angle of the sand

FIG. 1. Two segregation effects acting when the grains diffe
size and shape.~a! Size segregation: large grains tend to segreg
at the bottom of the pile.~b! Shape segregation: rounded grains te
to segregate at the bottom of the pile.
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u(x,t) @or alternatively the height of the sandpileh(x,t)#
which describes the static phase~i.e., the grains which be-
long to the pile!, and the local thickness of the layer of rol
ing grains R(x,t) to describe the rolling phase~i.e., the
grains that are not part of the pile but roll downwards on t
of the static phase!. BCRE also proposed a set of convectiv
diffusion equation for the rolling grains, which was lat
simplified by de Gennes@28#:

]R~x,t !

]t
52v

]R

]x
1G~R,u!, ~2!

wherev is the downhill drift velocity of the grains alongx,
assumed to be constant in space and in time. The interac
termG takes into account the conversion of static grains i
rolling grains, and vice versa. The simplest form ofG is
@26–28#

G~R,u!5g@u~x,t !2u r #R~x,t !. ~3!

Here u r denotes the angle of repose~the maximum angle
below which a rolling grain is converted into a static gra
@26,27,37,38#!. The rateg.0 has dimension of inverse time
andv/g represents the length scale at which a rolling gr
will interact significantly with a surface at an angle slight
above or below the angle of repose@28#. For notational con-
venience we do not consider the difference between
angle and the tangent of the angle, i.e.,

u~x,t ![2
]h

]x
. ~4!

The equation forh(x,t) follows by conservation:

]h~x,t !

]t
52G~R,u!. ~5!

Recently, BdG@31# have extended the BCRE formalism
to the case of two species. This formalism considers the
local ‘‘equivalent thicknesses’’ of the species in the rollin
phaseRa(x,t) ~i.e., the total thickness of the rolling phas
multiplied by the local volume fraction of thea grains in the
rolling phase at positionx), with a51,2 respectively for
small and large grains. The total thickness of the rolli
phase is defined as

R~x,t ![R1~x,t !1R2~x,t !. ~6!

The static phase is described by the height of the sand
h(x,t), and the volume fraction of static grainsfa(x,t) of
type a at the surface of the pile. Herex is the longitudinal
coordinate, and the pouring point is assumed to be atx50,
and we consider a silo or cell of lateral sizeL ~see Fig. 2!.

The equations of motion for the rolling species are@31#

]Ra~x,t !

]t
52va

]Ra

]x
1Ga , ~7a!

and the equation forh(x,t) follows by conservation:

]h~x,t !

]t
52G12G2 . ~7b!
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7010 56HERNÁN A. MAKSE
Hereva is the downhill convection velocity of speciesa
alongx. The interaction termGa takes into account the con
version of rolling grains of typea into static grains, and the
amplification of static grainsa by rolling grains of typea or
b. Ga is defined through a 232 collision matrixMab :

Ga~u,Ra ,fa![ (
b51

2

MabRb . ~7c!

The elements of the collision matrixMab characterize the
interaction of a rolling grain of typeb with a surface of static
grains of typea, and they are determined by the local ang
u(x,t), and the concentrationsfa(x,t). The concentrations
of static grains at the surface of the pilefa(x,t) are given by

fa~x,t !
]h

]t
52Ga , ~7d!

and

f11f251. ~7e!

The canonicalform of the collision matrix is defined by
taking into account a set of binary collisions between a r
ing and a static grain@31,39#:

M̂[Ua1~u!f12b1~u! x2~u!f1

x1~u!f2 a2~u!f22b2~u!
U. ~8!

This definition involves a set ofa priori unknown collision
functions contributing to the rate processes:aa(u) is the con-
tribution due to an amplification process~i.e., when a static
grain of typea is converted into a rolling grain due to
collision by a rolling grain of typea), ba(u) is the contri-
bution due to capture of a rolling grain of typea ~i.e., when
a rolling grain of typea is converted into a static grain!, and
xa(u) is the contribution due to a cross-amplification proce
~i.e., the amplification of a static grain of typeb due to a
collision by a rolling grain of typea).

BdG @31# used a ‘‘minimal’’ form of the collision matrix
to calculate the steady-state solution in the geometry o
two-dimensional silo for the case of mixtures of grains d
fering only in angle of repose. This solution shows a co
plete segregation at the low edge of the silo, and near
point the concentrations of static grains show power-law
havior. In their model, they consider a constant cro
amplification termxa(u)5const, and they consider the ang

FIG. 2. Diagram showing the variables used to describe
granular flow of mixtures in a granular Hele-Shaw cell or tw
dimensional silo.
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of repose of each species to be independent on the su
composition of the pile. A generalization of the minim
model of@31# to include not only different surface propertie
of the species but also different size of the species with sm
size ratios (d2 /d1&1.4) is considered in@35#.

Here, we use the BdG equations to study segregatio
well as stratification of mixtures of grains differing in siz
and shape in a two-dimensional silo~Fig. 2!. As in MCS
@32#, we focus on the dependence of the repose angle
every species on the composition of the surfacefb(x,t). We
use the following definitions of collision functions@32#:

aa~u![gaaP@u~x,t !2ua~fb!#,

ba~u![gaaP@ua~fb!2u~x,t !#,

xb~u![gbaP@u~x,t !2ub~fb!#, ~9a!

where

P@x#[H 0 if x,0

x if x>0.
~9b!

Here, the rates aregaa.0, and the generalized angle o
reposeua(fb) of a a type of rolling grain is a continuous
function of the composition of the surfacefb @32# @see Fig.
3, where we also defineuab asua(fb) for fb51#:

u1~f2!5mf21u11,

u2~f2!5mf21u2152mf11u22, ~10!

wherem[u122u115u222u21. We have assumed the differ
ence

c[u1~f2!2u2~f2! ~11!

e

FIG. 3. Dependence of the generalized angle of repose for
two types of rolling grains on the concentration of the surface
large grainsf2 for ~a! d.0, and~b! d,0, whered is defined in
Eq. ~1!. We defineuab5ua(fb51) @32#.
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56 7011STRATIFICATION INSTABILITY IN GRANULAR FLOWS
to be independent of the concentrationf2. We notice that the
fact that grains 1 are smaller than grains 2 impl
u1(f2).u2(f2) for any given concentrationf2 ~i.e., the
small grains are always the first to be captured!. The angular
difference c is thus determined by the difference in si
between the grains; the larger the size difference the la
c. Moreover, the fact that the grains have different sha
impliesu11Þu22 ~for instanceu11,u22 when the grains 1 are
more rounded than the grains 2).

The collision matrix includes the following processes@31#
~Fig. 4!.

~a! Capture, ba(u). Rolling grains are captured if the lo
cal angle of the sandpileu(x,t) is smaller than the genera
ized repose angleua(fb). The capture is proportional toRa
@40#.

~b! Amplification, aa(u). If the local angleu(x,t) is larger
than the generalized repose angleua(fb), then some static
grains of typea will be converted into rolling grains due
collision by rolling grains of typea. The amplification rate is
proportional to the concentrationfa in the sandpile, and to
Ra .

~c! Cross amplification, xb(u). When static grains of type
a are amplified by rolling grains of typeb. This cross-
amplification occurs when the local angleu(x,t) is larger
thanub(fb).

Equation~7a! now reads

]Ra

]t
52va

]Ra

]x
1gaaP@u~x,t !2ua~fb!#faRa

2gaaP@ua~fb!2u~x,t !#Ra

1gbaP@u~x,t !2ub~fb!#faRb . ~12!

III. STEADY-STATE SOLUTION

We now calculate the steady-state solution of the eq
tions of motion for the two-species sandpile including t
terms corresponding to cross amplificationMab , aÞb,
which were not considered in@32#.

We consider the geometry of a silo of lateral sizeL ~Fig.
2!. We assume that the differencec5u1(f2)2u2(f2) is
independent of the concentrationf2, then c5u112u21
5u122u22 ~see Fig. 3!. We setv15v2[v, and g115g22

FIG. 4. Schematic plot of captureba(u), amplificationaa(u),
and cross amplificationxa(u) functions used in the definition of th
present model. These functions are expected to be continuous
region near the angle of repose~as shown by the thin curves!.
However, when the ratio between the size of the grains is not c
to 1, thenc5u1(f2)2u2(f2) is large enough so we can approx
mate these functions by the forms shown in this figure.
s

er
s

a-

5g, and we keepg12Þg21. We seek a solution where th
profiles of the sandpile and of the rolling grains do n
change in time. Since stratification is an oscillatory solutio
stratification cannot be observed for the steady-state solu
We set

]h

]t
5v

R0

L
, ~13a!

and

]Ra~x!

]t
50, ~13b!

with boundary conditionsRa(x50)5Ra
0 , and Ra(x5L)

50, andR0[R1
01R2

0.
We first calculate the profile of the total rolling speci

R(x)5R1(x)1R2(x). From Eqs.~7a!, ~7b!, and~13! we ob-
tain

05
]R~x!

]t
52v

]R~x!

]x
2v

R0

L
, ~14!

so that the profile of total rolling species decays linearly w
x,

R~x!5
R0

L
~L2x!. ~15!

From Eqs.~7d!, ~12!, and~13a! we obtain the concentra
tions

f1~x!5
gP@u1~f2!2u~x!#R1~x!

vR0/L1gP@u2u1#R1~x!1g21P@u2u2#R2~x!
,

~16a!

f2~x!5
gP@u2~f2!2u~x!#R2~x!

vR0/L1gP@u2u2#R2~x!1g12P@u2u1#R1~x!
.

~16b!

The equations for the rolling species in terms of the co
centrations are obtained from Eqs.~7a!, ~7d!, and~13!:

v
]Ra~x!

]x
52~vR0/L !fa~x!. ~17!

Next, we divide the calculations in two regions: region
where u2(f2),u,u1(f2), and region B, where
u,u2(f2),u1(f2) @see Fig. 3~b!#. The steady-state solu
tion of Eqs.~7!–~9! shows a strong segregation pattern.

Region A. At the upper part of the pile we find tha
only small grains are present@for 0<x<xm , with xm

5R1
0L/R02v/(gc), see below#.

If u2,u,u1, from ~16! we obtain@41#

f1~x!51, f2~x!50. ~18!

Using Eqs.~17! and~18! we find the profiles of the rolling
species

R1~x!5R1
02

R0

L
x, R2~x!5R2

0 . ~19!
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7012 56HERNÁN A. MAKSE
The profile of the sandpile is obtained from Eqs.~7b!, ~12!,
and ~13a!:

2
vR0

L
5g@u~x!2u11#R1~x!1g21@u~x!2u21#R2~x!,

~20!

so that

u~x!2u115
2v/g2cg21LR2

0/~gR0!

L~R1
01R2

0g21/g!/R02x
. ~21!

This solution is valid whenu(x).u2(f250)5u21. Then it
is valid for x,xm , wherexm is

xm5
R1

0

R0
L2

v
gc

. ~22!

Region B. At the lower part of the pile (xm<x<L), we
find that, after a small region of the order ofv/(gc), mainly
large grains are present.

If u,u2,u1, from Eqs.~7b!, ~12!, and~13a! we obtain

2
vR0

gL
5@u~x!2u1~f2!#R1~x!1@u~x!2u2~f2!#R2~x!,

~23!

and therefore

u~x!2u2~f2!5
2vR0/~gL !1cR1~x!

R~x!
. ~24!

Inserting Eq.~24! in Eq. ~16! we obtain the concentrations a
a function of the rolling species

f1~x!5
R1~x!

R~x! S 11
gcL

vR0
R2~x!D , ~25a!

f2~x!5
R2~x!

R~x! S 12
gcL

vR0
R1~x!D . ~25b!

We obtain the equations for the rolling species using E
~17! and ~25!:

]R1~x!

]x
5 2

R1~x!

R~x! S R0

L
1

R2~x!

r D , ~26a!

]R2~x!

]x
5 2

R2~x!

R~x! S R0

L
2

R1~x!

r D , ~26b!

where r[v/(gc). Setting u5R1 /R we obtain from Eq.
~26a!

ru852~12u!u, ~27!

and the solution is

R1~x!

R~x!
5

1

11C exp@~x2xm!/r #
, ~28!
s.

whereC is an integration constant. By considering the co
tinuity at x5xm , we obtainC5R2

0L/(R0r ) @42#. The profile
of the pile is obtained from Eqs.~24! and ~10!:

u~x!2u2252mf1~x!1
cR1~x!L/R02v/g

~L2x!
. ~29!

We notice that the parameterr 5v/(gc) is expected to be
of the order of the size of the grains, so for large system s
r !L, andC@1. Then the steady-state solution can be si
plified, and we arrive to the following simpler forms whe
also considering that, as in the experiment, an equal volu
mixture is used~i.e., R1

05R2
05R0/2).

Region A. Valid for 0<x<xm5L/22v/(gc):

f1~x!51, f2~x!50, ~30a!

R1~x!5R0S 1

2
2

x

L D , R2~x!5
R0

2
, ~30b!

u~x!2u115
2v/g2cg21L/~2g!

~L/2!~11g21/g!2x
. ~30c!

Region B. Valid xm<x<L:

f1~x!5expF2
gc

v
~x2xm!G , ~31a!

R1~x!5
2v

gcL
f1~x!R~x!, ~31b!

u~x!2u2252mf1~x!2
v

g~L2x!
. ~31c!

Figure 5 shows the profiles of the steady state solution
typical experimental values. We use a cell of sizeL530 cm.
In @43# the values of the different phenomenological coe
cients appearing in the theory were measured for a typ
equal-volume mixture consisting of quasispherical gla
beads of mean diameter 0.27 mm, and cubic-shaped s
grains of typical size 0.8 mm. The mean value of the veloc
of the grains falling down the slope is of the orderv.10
cm/sec. The rateg was also estimated in@43# to be of the
order of g.20/sec. A typical value of the thickness of th
layer of rolling grains isR0.0.25 cm@44#. The difference
tanc5tanu112tanu21 is of the order of 0.120.3 @45#.

The concentrations@Fig. 5~b!# show the strong segrega
tion of the mixture; the mixing of the species is concentra
only in a small region, of the order ofv/(gtanc).1.525
cm, in the center of the pile. The top part of the pile is ma
of small grains so that the angle is approximately equa
u11 @Fig. 5~c!#. Towards the center of the pile the angle d
creases and it is equal tou21 at x5xm (u21 is the angle at
which large grains start to be captured on top of sm
grains!. Then the angle increases gradually tou22 towards
the lower part of the pile made of large grains. The profile
R(x) @Fig. 5~a!# behaves linearly withx, which is a result of
the conservation of number of grains Eq.~13a!. Same depen-
dence is observed in the case of a single-species san
@28#. The exponential behavior of the concentrations a
rolling speciesRa(x) with a characteristic decay length o
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56 7013STRATIFICATION INSTABILITY IN GRANULAR FLOWS
sgc near the center of the pile is expected, since we
solving equations of the type]Ra /]x;2(gc/v)Ra(x). We
notice that the segregation solution~30! and ~31! is deter-
mined by the fact thatu1(f2).u2(f2), i.e., by the fact that
the small grains are trapped first since they have a la

FIG. 5. Steady-state solution~30!, ~31! for the two-species
granular flow in a silo geometry. We use the following typic
experimental values for the phenomenological constants appe
in the theory@45#: L530 cm, tanu1150.6, tanu2250.5, tanc50.2,
tanm50.1, tand520.1, R050.25 cm,v510 cm/sec,g520/sec,
andg21510/sec.~a! Profiles of the rolling species.~b! Profile of the
concentrations.~c! Profile of the sandpile.
re

er

generalized angle of repose for a given concentrationf2.
Then, this solution shows the size segregation of the mixt

IV. STABILITY ANALYSIS

In the experiments of@22#, it was found that there is a
transient regime of segregation before the layers appear.
initial segregation regime turns into stratification only f
mixtures withd.0 @Eq. ~1!#. At the onset of the instability
leading to stratification, it is observed that a small amoun
large grains is captured on top of the region of small gra
near the center of the pile@region A, see Fig. 6~a!#. This
leads to the appearance of the first layer of larger grains
then to the oscillations characteristic of stratification. On
other hand, ifu11.u22 (d,0) the segregation profile re
mains stable@Fig. 6~b!#. This picture was also confirmed b
the models proposed in@32#.

The first sublayer of large grains corresponds to the
pearance of the first ‘‘kink’’@32,33#. The kink is an uphill
wave at which the rolling grains are stopped. This fi
‘‘kink’’ is formed only of large grains~as was observed in
@22# and@32#!. This kink appears to move uphill and creat
an incipient layer of large grains. Then the newly arrivin
grains roll down to the bottom of the pile where a new ki
is developed. At this point, the kink~formed by large and
small grains! starts to move upwards and all grains a
stopped at the kink, but the small-rounded grains are stop
first so that the result is a pair of layers with the sma
rounded grains being found underneath the large cu
grains.

Next, we analyze the stability of the steady-state solut
under perturbations, by assuming that the steady-state s
tion obtained in Sec. III is valid for the initial transient re
gime of the evolution. We perturb the steady-state profiles

ing

FIG. 6. Schematic process leading to~a! stratification (d.0),
and ~b!, segregation (d,0).
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considering that a small amount of large grains has b
captured in the region A, near the center of the pile (x&xm),
without changing the angle of the pile. We then analyze
short-time evolution of this perturbation to the steady-st
profile. The dynamical evolution of the additional large ro
ing grains are now governed by the following equation:

]R2~x,t !

]t
52v

]R2

]x
1g~u2u22!R2 , ~32!

where the repose angle of the large rolling grains isu22 since
the surface is made only of large grains.

We are interested in the behavior of the profiles near
center of the pile, whereR1 is very small, so we can focu
only on the behavior of the large grains. We look for t
short-time behavior ofR2, so we can assume that the ang
of the pile remains unchanged from its initial value. Then
replaceu(x,t) in Eq. ~32! by u(x) given by the steady-stat
solution ~21!, and we arrive at the following equation:

]R2~x,t !

]t
52v

]R2

]x
2S gd1

v1v8

~ l 2x! DR2~x,t !, ~33!

wherev8[cg21LR2
0/R0, and l [L(R1

01R2
0g21/g)/R0. The

solution of Eq.~33! is

R2~x,t !5~ l 2x!ve2gdt, ~34!

with v[(v1v8)/v.
According to the exponential factore2gdt in Eq. ~34!,

R2(x,t) decreases as a function of time whend.0. This
implies that more large grains are captured, and the pe
bation of large grains evolves into the first sublayer of la

FIG. 7. The instability mechanism for stratification is a result
two competing segregation effects. Size segregation@first panels in
~a! and ~b!#, and Shape segregation@second panels in~a! and ~b!#.
~a! Stable segregation when the mixture is composed of small-c
grains and large-rounded grains, and~b! unstable segregation lead
ing to stratification when the mixture is composed of small-round
grains and large-cubic grains.
n

e
e

e

e

r-
e

grains and then to stratification according to the experime
findings @22#. On the other hand, whend,0, R2(x,t) in-
creases as a function of time, so that the large grains of
initial perturbation are amplified, the perturbation disappea
and the segregation profile remains stable.

V. STRATIFICATION INSTABILITY

The steady-state solution calculated in Sec. III shows
size segregation of the mixture, while the stability analysis
Sec. IV shows that the grains also shape segregate acco
to the value ofd. The stable steady-state solution is achiev
when the mixture is composed of small cubic grains@grains
I in Fig. 7~a!# and large-rounded grains@grains II in Fig.
7~a!#. In this case, the segregation of the mixture results
cause size and shape segregation act simultaneously to
regate the large-rounded grains at the bottom and the s
cubic grains at the top. On the other hand, when pourin
mixture of small-rounded grains@grains I in Fig. 7~b!# and
large cubic grains@grains II in Fig. 7~b!# an instability devel-
ops since the size segregation and shape segregation m
nisms tend to segregate the same grain in opposite region
the cell.

Qualitatively, the onset of the instability can be seen
follows. If a small amount of large grains is captured near
center of the pile where the angle of the pile isu.u11 ~point
A in Fig. 3!, then the repose angle for additional large rollin
grains isu22. Thus, if u.u11,u22 @point B in Fig. 3~a!#,
more large grains can be trapped~since the angle of the
surface is smaller than the repose angle!, leading to the first

f

ic

d

FIG. 8. Phase diagram for two-dimensional flows of granu
mixtures.d2 is the size of the large grains,d1 is the size of the small
grains,u22 is the repose angle of the large grains, andu11 is the
repose angle of the small grains. We distinguish the regions
stratification and strong segregation~as shown by the steady-sta
solution presented here!. Weak segregation is expected in th
shaded region when the size ratio is close to 1. This case is
cussed in@35#.
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56 7015STRATIFICATION INSTABILITY IN GRANULAR FLOWS
kink of large grains and then to stratification. On the oth
hand, the perturbation of large grains disappears whend,0.
Since u.u11.u22 @point C in Fig. 3~b!#, no more large
grains are captured, the fluctuation disappears, and the
regation profile remains stable.

In light of these results we propose the phase diag
shown in Fig. 8. The model presented here predicts a re
of stratification (d.0), and a region of strong segregatio
(d,0) for size ratios not close to one. In Fig. 8 we show t
results of numerical integration of the equations of mot
using the following parameters. Stratification:d50.25,
c50.3, g115g2251, g125g2150.1, v15v251, R1

05R2
0

50.5, and segregation: the same parameters excep
d520.1. For other parameters such asv1Þv2, different
gab , or u122u11Þu222u21 we obtain similar results. In ad
dition, when the cross-amplification ratesgab are of the or-
der of the amplification ratesgaa we also find oscillations in
the center of the pile which decay exponentially whend,0.

VI. DISCUSSION

In summary, we study analytically segregation and str
fication in granular mixtures focusing on the instabili
mechanism for stratification. We find the steady-state so
tion of the equations of motion which shows strong s
segregation with the small grains located at the top of
pile, and with the large grains located near the bottom of
e

,

od

e

et

ns

v

r

eg-

m
on

for

i-

-

e
e

pile. In the center of the pile we find a region of mixin
where the concentration profiles behave exponentially wit
characteristic region of mixing given byv/(gc). This region
can be of the order of 1.525 cm and is observed experimen
tally. We also find that the steady-state solution is sta
under a perturbation involving large grains trapped at
center-top of the pile, whend,0 ~corresponding to large
grains less faceted than small grains!. On the other hand, the
steady-state solution is unstable under the same perturb
whend.0 ~corresponding to large grains more faceted th
small grains!. The stratification instability is related to th
fact that, whend.0, there appears a competition betwe
size segregation and shape segregation: the large-c
grains tend to size segregate at the bottom of the pile, w
at the same time, they tend to shape segregate at the to
the pile. Thus, the segregation solution becomes unsta
and the system evolves spontaneously to stratification.
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7016 56HERNÁN A. MAKSE
is not too small~i.e.,‘ d2 /d1*1.4, whered1, d2 are the typical
size of the small and large grains!. The cased2 /d1&1.4 give
rise only to segregation@24,25# and is treated in@35#.

@35# T. Boutreux, H. A. Makse, and P.-G. de Gennes~unpublished!.
@36# A. Mehta, inGranular Matter: An Interdisciplinary Approach,

edited by A. Mehta~Springer-Verlag, New York, 1994!.
@37# R. A. Bagnold, Proc. R. Soc. London, Ser. A295, 219~1966!.
@38# H. M. Jaeger, C.-H. Liu, and S. R. Nagel, Phys. Rev. Lett.62,

40 ~1989!.
@39# We do not consider exchange processes@31# in the definition

of the collision matrix.
@40# We notice that this term also includes ‘‘cross capture,’’ sinc

rolling grain of typea can be captured on a surface of sta
grains of typeb (fb51).

@41# According to Eq. ~16!, another possible solution whe
u2,u,u1 is obtained when the denominator of Eqs.~16a! and
~16b! is equal to 0, andf1Þ0, f2Þ0. But this solution is not
a

physical because, whenu.u2, large grains can only be ampli
fied but not captured, so thatf250 is the only possible physi-
cal solution.

@42# Another possible solution is obtained by trying to impose t
solution for region B for allx. Then we do not consider regio
A as a possible solution and the constantC is obtained from
R1(x50)5R1

0. In this caseC5R1
0/R2

0. However, this solution
is not physical since it would implyf1(x50).1 if
R1

0/R0.r /L.
@43# H. A. Makse, R. C. Ball, H. E. Stanley, and S. Warr~unpub-

lished!.
@44# This value was obtained for a cell with a gap of 5 mm betwe

the vertical slabs, and pouring the mixture at a rate
10 cm3/sec.

@45# We notice that for comparison with experimental results,
the values of the angles appearing in the theory should
replaced by the tangent of the angles@see Eq.~4!#.


