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Abstract

The linear and nonlinear elastic properties of granular media are analyzed within the context of e!ective medium
theories, as well as with numerical molecular dynamic simulations, assuming the validity of the Hertz}Mindlin theory at
the single contact level. There is a crucial distinction between force laws which are path independent, leading to
a hyper-elastic e!ective medium theory, and those which are path dependent, for which the deformation history must be
followed explicitly. The e!ective medium theories provide a reasonable description of existing experimental data,
considered as a function of applied stress, but there are signi"cant discrepancies. Numerical simulations resolve the
question as to whether the problem lies with the treatment of the individual grain}grain contact or with the e!ective
medium approximation (ema). We "nd that the problem lies principally with the latter: The bulk modulus is well
described by the ema but the shear modulus is not, principally because the ema does not correctly allow for the grains to
relax from the a$ne motion assumed by the ema. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The elastic properties of granular aggregates, such as
sedimentary rocks, can be enormously nonlinear as com-
pared with the properties of nonporous materials [1].
The end member of such systems may be taken to be
a loose/unconsolidated aggregate of glass beads which
acquire a sti!ness solely as a result of applied stress. This
is because if two grains are just touching, the force,
considered as a function of displacement, does not ini-
tially grow linearly, as with most systems, but it has
a power law behavior (Eqs. (1) and (2) below). Aside from
posing an interesting problem in the physics of dis-
ordered systems, these systems are unusually nonlinear in
their response and they can exhibit path dependence. By
this we mean that the work done in deforming the system
can depend upon whether one "rst compresses the
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system, then shears it, or "rst shears then compresses, or
compresses and shears simultaneously, etc. The result
depends upon the path taken in Me

ij
N space and not just

on the "nal state of strain Me
ij

("nal)N.
Here, we review some recent theoretical research

we have undertaken in an attempt to understand
these systems. We "rst discuss e!ective medium
theories of the elastic properties, then we present our
molecular dynamic simulations, and we end with a brief
summary.

2. E4ective medium theories

The starting point is the behavior of a single grain}
grain contact, which we assume to be describable by the
Hertz}Mindlin theory and variations thereof. Two
touching grains are displaced in compression along a line
joining their centers by an amount 2w. They may also
su!er a transverse relative displacement of their centers
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by an amount 2s, holding their rotational orientation
"xed for the moment. The normal and transverse forces,
f
/

and f
5
may be written in terms of w and s. The idea is

that as two spheres are pressed together the circle of
contact continuously grows; the result is that the contact
becomes increasingly sti!er with respect to further com-
pression. Similarly, it may be assumed, for example, that
the contact circle is a no-slip zone. The more the spheres
are pressed together, the sti!er the contact becomes with
respect to transverse relative displacement of the sphere
centers (assuming the spheres are not allowed to rotate).
The relevant expressions relating the forces to the dis-
placements may be written as

f
/
"2

3
C

/
R1@2w3@2, (1)

*f
5
"C

5
(Rw)1@2*s. (2)

The prefactors C
/
"4G/(1!l) and C

5
"8G/(2!l) are

de"ned in terms of the shear modulus G and the Pois-
son's ratio l of the individual particles. R is the harmonic
mean of the radii of the two spheres.

Eq. (2) is written in di!erential form to emphasize the
fact that the actual value of the transverse force, f

5
,

depends upon the deformation path taken in Mw, sN space
and not simply on the "nal values of w and s. Thus
f
5

depends upon the entire history of the trajectory:
f
5
"f

5
[Mw(m)N, Ms(m)N] where m is some conveniently

chosen parameter (see Refs. [2,3] and references therein).
Along a given trajectory there is no hysteresis, meaning
the grain}grain contact is exactly reversible along that
trajectory. But one does di!erent amounts of work de-
pending upon the trajectory taken; if one releases the
forces along a trajectory di!erent than the one in which
they were established, there will be a net loss of energy.
This behavior of a single grain}grain contact leads dir-
ectly to the path dependence of the macroscopic en-
semble, considered as a function of applied strain, Me

ij
N.

The basic idea of the e!ective medium theories rel-
evant to these problems is that the macroscopic work
done in deforming the system is set equal to the sum of
the work done on each grain}grain contact and that the
latter is replaced by a suitable average. There are two
assumptions: (1) The center of each grain displaces ac-
cording to the dictates of the macroscopic strain tensor,
e
ij
:

u
i
"e

ij
X

j
, (3)

where X is the initial position of the center of the grain.
When the deformation is describable by a symmetric
deformation, +]u"0, none of the grains rotate. This is
called the `assumption of a$ne motiona. (2) Each grain
experiences essentially the same environment as any
other grain. On average, the distribution of contacts is
spherically symmetric. Under these assumptions, the to-
tal work done on the system may be written in terms of
angular averages of the work done on a single contact.

This sort of `e!ective medium theorya is simpler than the
conventional Bruggeman type of ema [4] (see also Ref.
[5]) in that it is more analogous to a simple average of
the non-linear spring constants.

As written, the transverse force, Eq. (2), was derived
under the assumption that once the grains are pressed
together, there is perfect sticking of the contact circles.
This force is path dependent, meaning that whether the
grains are "rst pressed and then sheared, or vice versa,
makes a di!erence in the work done on the contact. The
numerical value of f

5
depends upon the path taken in

(w, s) space. Were we to assume, on the other hand, that
there is perfect slippage of the particles, f

5
,0 instead of

Eq. (2), then the resulting forces are path independent.
The practical result of this path independent assumption
is that the resulting work done in deforming the system is
now a function of the state of strain and is not dependent
upon the way in which the strain is applied. The path
independent forces lend themselves to the development
of a macroscopic strain energy density, and thus to a
well-de"ned theory of hyper-elasticity, whereas the path
dependent forces need to be treated specially. We con-
sider these two cases in turn. A cautionary note: In reality
the contact may slip over an annular ring if the coe$cient
of friction is "nite [6]. In the limit of in"nitesimal *s we
either neglect the slippage altogether or we assume com-
plete slip, as the case may be. In any case, the forces are
conservative in the sense that if the deformation path,
whatever it may be, is reversed exactly, the total work
done is zero.

2.1. Path independent forces

If the work done on a single contact is independent of
the order in which the normal and transverse forces are
applied, i.e. they are path independent, then the system as
a whole is said to be hyper-elastic. An energy density,
;(Me

ij
N), can be de"ned in terms of the macroscopic strain

tensor, e
ij
, and it can usefully be expanded in powers

thereof. For any isotropic system this expansion takes the
form [7]:

;(Me
ij
N)";

0
!pe

ii
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k]e2

ii
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ij
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3
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ij
e
jk

e
ki
#Be2

ik
e
ll
#1

3
Ce3

ll
#2. (4)

Here, p is the static pressure and the strain tensor, e
ij
, is

measured relative to the system in its reference state at
pressure p. The second-order elastic constants are K, the
bulk modulus, and k, the shear modulus; they determine
the speeds of small amplitude sound:

<
p
"J[K#(4/3)k]/o (5)

is the compressional sound speed and

<
4
"Jk/o (6)

D.L. Johnson et al. / Physica B 279 (2000) 134}138 135



Fig. 1. Path independent ema predictions of pressure dependent
sound speeds of granular media with welded contacts. The
experimental data of Domenico [9] should be compared against
the b"0 curves. A coordination number Z"9 was assumed
(from Ref. [2]).

Fig. 2. Path independent ema for one of the third-order elastic
constants of frictionless glass beads, as a function of con"ning
pressure.

is the shear speed. (o is the density.) The third-order
elastic constants, A, B, C describe how the speeds of
sound change to "rst order in an additional applied
stress, *p

ij
, and they also describe such nonlinear e!ects

as second harmonic generation, shock wave formation,
etc. For the path-independent model described above (i.e.
when we set f

5
,0), it is straightforward to carry out this

expansion to derive analytic expressions for the various
moduli [2]. Indeed, the path-independent models can be
generalized slightly to include those in which the beads
are "rst welded together over a radius b'0 [8].

Theoretical predictions of the speeds of sound from
this path-independent model for di!erent values of b are
plotted in Fig. 1, taken from Ref. [2]. One of the third-
order constants from this model is plotted in Fig. 2.
(Here, the third order constants are in the ratio
A :B :C : : 8 : 4 : 1 so it is necessary to plot only one of
them.)

For the case in which b"0 (i.e. unconsolidated beads)
the ema predictions can be simply expressed as functions
of the pressure:

K"

C
/

12p
[(1!/)Z]2@3C

6pp

C
/
D

1@3
, (7)

k"
C

/
20p

[(1!/)Z]2@3C
6pp

C
/
D

1@3
, (8)

A"!

C
/

70p
[(1!/)Z]4@3C

6pp

C
/
D

~1@3
. (9)

Here, Z is the average coordination number and / is the
porosity.

From Eqs. (7)}(9) as well as from Figs. 1 and 2, we see
that, for unconsolidated beads, the second-order con-
stants decrease to zero as the con"ning pressure de-
creases to zero but the third-order (and higher) elastic
constants actually diverge. It is in this sense that uncon-
solidated granular media can be said to be extremely
nonlinear. The presence of a welded contact, b'0, acts
to cut-o! the divergence, but even so these systems can be
orders of magnitude more nonlinear than ordinary, non-
granular materials, such as metals, glasses, plastics, etc.,
for which the third-order constants are of the same order
of magnitude as the second.

2.2. Path dependent forces

When the transverse force is given by Eq. (2), the work
done in deforming the system is dependent upon the
order (path) in which this is done. An expansion such as
Eq. (4) therefore does not exist. Nonetheless, it is possible
to develop an e!ective medium theory in which one keeps
track of the order (path) in which the deformation is
applied. The resulting stress tensor, p

ij
, depends upon the

path taken in arriving at the "nal state of strain, e
ij
. As it

turns out, the second-order elastic constants are in fact,
well-de"ned path-independent quantities which depend
only upon the "nal state of strain. In a typical experi-
ment, however, the sound speeds may be measured as
a function of applied stress, p

ij
, not applied strain, e

ij
, and

so the sound speeds, considered as a function of applied
stress, depend upon the order in which those stresses are
applied. If the deformation path can be parameterized by
some known functions, Me

ij
(m)N where m is a convenient

parameter, the relationship between sound speeds and
applied stress can be derived [2].
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Fig. 3. A comparison of the experimentally determined speeds
of sound in a uniaxial strain test, as a function of applied stress.
The solid symbols are compressional speeds parallel and per-
pendicular to the stress direction, and the open symbols are the
shear speeds, parallel to the stress direction and perpendicular to
it, both polarizations. The continuous lines are the predictions of
the ema (from Ref. [10]).

Fig. 4. Pressure dependence of the elastic moduli from MD,
experiments, and path dependent ema: (a) bulk modulus, and (b)
shear modulus. The data are from Refs. [9,11,12].

For the special case of loose beads in which the system
is hydrostatically compressed to its "nal pressure, p, the
ema expressions for K and k are particularly simple. K is
unchanged from Eq. (7) and k is changed by virtue of the
transverse forces:

K"

C
/

12p
[(1!/)Z]2@3C

6pp

C
/
D

1@3
, (10)

k"
C

/
#(3/2)C

5
20p

[(1!/)Z]2@3C
6pp

C
/
D

1@3
. (11)

We see that K is predicted to be independent of C
5
and

k is predicted to be linearly dependent upon C
5
, a point

to which we return later.
The ema can be applied to any stress protocol, not just

hydrostatic stress. In Fig. 3 we show the results of
measurements of sound speeds on loose glass beads con-
"ned to a rigid cylinder. This is the so-called uniaxial
strain test. The speeds are plotted as a function of applied
stress, p

zz
. We show the predictions of the e!ective me-

dium theory, in which certain reasonable assumptions
about some of the parameters were made. (See Ref. [10]
for details.) We see that the application of non-hydros-
tatic stress breaks the symmetry of the system, with the
result that the speed of a longitudinal wave traveling
along the direction of the applied stress increases more
rapidly than that propagating perpendicular to it. Addi-
tionally, a transverse wave propagating perpendicular to
the direction of applied stress can have two inequivalent

polarizations each of which is di!erent than that of a
transverse wave parallel to the direction of applied stress.
The e!ective medium theory for the di!erent sound
speeds is in rough accord with the experimental data.

3. Molecular dynamics simulations

With reasonable choices of the relevant parameters,
the e!ective medium theories described above can give
a good approximate description of the acoustic proper-
ties of granular media, as in Fig. 1, but there are prob-
lems, even for the simplest case of unconsolidated beads:
(1) The e!ective medium theory predicts that the second
order moduli vary with con"ning pressure as p1@3, re-
gardless of the values of coordination number, Z, and
regardless of the values of C

/
or C

5
. It is clear from Fig.

1 that the real data do not obey this power law. (2)
Absent a molecular dynamics simulation, one does not
know the appropriate value of the average coordination
number, Z, to use in Eqs. (10) and (11). (3) The ratio K/k,
or, equivalently <

1
/<

4
, is predicted from Eqs. (10) and

(11) to be independent of pressure. Experimentally the
ratio K/k is indeed roughly constant but with a value
which is intermediate between the two ema predictions,
Eqs. (7) and (8) on the one hand, and Eqs. (10) and (11) on
the other. Thus the implication is that C

5
(in Eq. (11)) is

much smaller in real systems than expected from the
Mindlin theory, Eq. (2), or that the ema is wrong.

These facts have motivated us to undertake molecular
dynamics simulations [11]. In Fig. 4 we show the existing
experimental data for K and k on loose glass beads along
with predictions of the e!ective medium theory (Eqs. (10)
and (11)). From the simulations we "nd that the numer-
ical value of the average coordination number is Z+6
(not Z"9 as in Fig. 1) for pressures less than 100 MPa,
so this is the value we use in Eqs. (10) and (11). We also
show the results for our simulations. Although there is
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Fig. 5. Bulk modulus, K, and shear modulus, k, vs. a for a "xed
pressure, p"100 kPa. The e!ective medium theory is compared
against the unrestricted numerical simulations. For comparison,
we also show the results of simulations in which the displace-
ment of each grain is restricted to a$ne motion and rotation is
disallowed.

scatter within and disagreement between the di!erent
data sets, we see immediately that the simulations, the
e!ective medium theory, and the data are in reasonable
agreement for the bulk modulus, K. The experimental
data and the simulations are in reasonable agreement for
k. The ema, however, signi"cantly over-predicts k. Our
conclusions are that the assumption of the Hertz}Min-
dlin contact law, Eqs. (1) and (2), is not seriously in error,
the ema is quite accurate in predicting K, and it is quite
inaccurate in predicting k.

According to the ema, the transverse force, f
5
, contrib-

utes only to the shear modulus and not to the bulk
modulus. Thus, we are motivated to examine molecular
dynamic simulations in which C

5
in Eq. (2) is replaced by

aC
5
where the dimensionless parameter a is varied from

0 to 1. The results for a con"ning pressure of p"100 kPa
are shown in Fig. 5, along with the predictions of Eqs.
(10) and (11). The simulations con"rm that K is essential-
ly independent of the strength of the transverse force.
Astonishingly, the shear modulus is extremely sensitive in
that it (nearly) vanishes as aP0, in sharp contrast to the
prediction of Eq. (11). What is the most serious problem
with the ema? We believe it to be the `a$ne assumptiona
we discussed earlier. Thus, we redo the numerical simula-
tions by forcing each ball to translate according to Eq. (3)
and not rotate at all. Finally, these simulations, which are
also shown in Fig. 5 are indeed in agreement with the
ema predictions, Eq. (11). What is evidently happening in
the unconstrained simulations, and in the experiments, is
that the beads in the immediate neighborhood of each
grain move around relative to the central grain in such

a way that if there are central forces only (C
5
"0), there is

a nearly complete relaxation of the system to an applied
shear. The system is a #uid, or nearly so.

4. Conclusions

We have found that: (1) The Hertz}Mindlin contact
theory is a good approximation to the actual grain-grain
contact law in real glass bead systems subjected to a
known stress. (2) The very simple e!ective medium ap-
proximation gives a reasonable, if approximate, descrip-
tion of the response of the system. (3) There is a big
di!erence between systems in which the forces may be
presumed to be conservative and path independent and
those for which the forces are path dependent. In the
former, a hyper-elastic theory of the elastic constants
may be developed whereas in the latter the third-order
(and higher-order) constants are unde"nable. (4) The
molecular dynamic simulations establish the validity of
the e!ective medium theory for the bulk modulus and
also establish that the ema for the shear modulus is in
serious error. The problem lies with the inability of the
ema to correctly treat the relaxation of the surrounding
grains when a shear deformation is applied.
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