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Tracer dispersion in a percolation network with spatial correlations
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We analyze the transport properties of a neutral tracer in a carrier fluid flowing through percolationlike
porous media with spatial correlations. We model convection in the mass transport process using the velocity
field obtained by the numerical solution of the Navier-Stokes and continuity equations in the pore space. We
find that the resulting statistical properties of the tracer show a transition from a subdiffusion regime at low
Peclet number to an enhanced diffusion regime at higbl@enumber.

PACS numbes): 61.43.Gt, 47.55.Mh, 66.36h

I. INTRODUCTION small in some fluid elements of the void space. Saffman
showed[1] that the mean square duration of a tracer step is
The phenomenon of hydrodynamic dispersion—the unnot finite but diverges logarithmically unless an upper cutoff
steady transport of a neutral tracer in a carrier fluid flowingis introduced into the typical time step. This upper cutoff is
through a porous material—has been widely investigated iimposed by the mass transport mechanism of molecular dif-
the fields of petroleum and chemical engineefibg4]. One  fusion.
can identify different regimes of tracer dispersion according Molecular diffusion is expected to affect the tracer motion
to the Pelet number Pev//D,,, which is the ratio be- iy two ways[1].
tween the typical time for diffusion’?/D, and the typical (i) A quantity of material may cross from one streamline
time for convection’/v. Herev is the velocity of the carrier ith fluid velocity v to another bylateral diffusion if the
fluid, /* a characteristic length scale of the porous media, angme step for convectionr| /v is larger thant;, wheret,

Dml th:ah moIeClIJIIapr (I:ih;fusivitg/ of thg tracer. lecular diffusi =/ﬁ/2Dm is the characteristic time for molecular diffusivity
S e e e s o pEEES 10 become appreciaf] and /. and . are th
Y P fongitudinal and lateral pore lengths, respectivehjth re-

In the large-Pelet-number regime, also callediechanical L o
dispersion convection effects are significant; the tracer ve-Spect to the flow directior{1]. Thus, it} /v>1,, the tracer

locity is approximately equal to the carrier fluid velocity, and @S €nough time to diffuse across the pore, and the time step
molecular diffusion plays little role. The tracer samples the@ssociated with such a moveds=t,. When//v<t,, the
disordered medium by following the velocity streamlines. Intime duration of a convective step is smaller than the time
a random walk picture, we may think of a tracer particlerequired for molecular diffusion, and the tracer moves with
following the direction of the velocity field, and taking steps the carrier fluid taking a step of duratiaxt=//v.
of length/” and duration//v. (i) An amount of material may be transported by diffu-
The classical approach to model dispersion in porous mesion along the pore The same considerations as in pdint
dia is to consider microscopically disordered and macrolead to a time stepdt=// /v in which convection dominates
scopic isotropic and homogeneous porous materials. Undevhen / /v<to=/ﬁ/2Dm. Here the typical length scale is
these conditions, dispersion is said to ®aussianand the  the longitudinal length of the por€; . If /) /v>t,, diffusion
phenomenon can be mathematically represented in terms dbminates and the tracer takes a time si¢pt,,.
the convection-diffusion equatiof2]. This traditional for- Here we propose a model of tracer dispersion in a porous
malism, which is valid for Euclidean geometries, cannot bemedium. The porous medium is composed of blocks of im-
adopted to describe the global behavior of hydrodynamigpermeable material that occupy, with a given probabpita
dispersion in heterogeneous systems. Specifically, in the casguare lattice. We consider a lattice at the site percolation
of percolation porous media, the breakdown of the macrothreshold, so an incipient spanning cluster is formed that
scopic convective-diffusion description is a direct conse-connects the two ends of the lattice. Previous studies mod-
quence of the self-similar characteristic of the void spaceeled the convective local “bias” for the movement of the
geometry. neutral tracer in the porous media assuming Stokes [fRjw
The movement of a tracer in a fluid flow field with a Even at macroscopically small-Reynolds-number conditions,
broad velocity distribution is an interesting phenomenon thathis assumption might be violated in real flow through po-
displays a rich variety of physical behaviors. Consider, e.g.rous media, especially in the case of heterogeneous materials
fluid flow in percolation clusters near the percolation (e.g., percolationlike structuresvhere a broad distribution
threshold—a model system relevant to a porous mediunof pore sizes can lead to a broad distribution of local fluxes.
with stagnant small-velocity zones that are linked with large-As a consequence, inertial effects might be locally relevant.
velocity zones. In this case the typical time for convectionTo avoid this problem, we use the steady-state velocity field
/Iv is without bound since the velocity can be arbitrarily obtained by solving the full set of Navier-Stokes in the per-
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colation geometry. Then we study the transport properties of
a dynamically neutral tracer moving in the flow field.

Il. MODEL OF TRACER DISPERSION IN A POROUS
MEDIUM

We treat the competition between the effects of convec-
tion and diffusion. The velocity field presents a broad scale-
invariant power-law distribution of magnitude values, and
we find that there are regions of very small velocity in which
the tracer can be trapped. If convection is important, the
tracer follows the streamlines in the flow field. When a very

19 e b e I S B B
small velocity region is reached, molecular diffusion effects 19 .\:
cannot be neglected, since by diffusion the tracer may access 10" | 6\
the stagnant zones—where it then spends a long time. We ] e 0.71
shall see that the statistical properties of the tracer—e.g., the ~ 10" < |
first-passage time and the root mean square displacement— 2 4
show a transition from a subdiffusion regime to an enhanced & 107 b
diffusion regime as the &t number is increased. The ex- 1
istence of the stagnant zones is also related to the geometri- 10° (b)
cal properties of the medium—whether it is correlated or
uncorrelated in the occupancy variables of the percolation 107 bt
cluster. 107 10° 10° 10" 10
We start by describing the disordered medium and the
velocity field. Our basic model of a porous medium is a 10
percolation model at threshol6] modified to introduce cor-
relations among the occupancy urifd. Transport in porous 08 |
media with a broad distribution of conductance values is
dominated by those regions where the conductances are — 06 |
larger than some critical value. This critical value corre- s
sponds to the smallest conductance such that the set of con- : G4 |
ductances above the threshold forms a conducting spanning )
cluster[8]. This cluster is the critical percolation cluster at (C)
the threshold which we use in our simulations. 02t
We assume the existence of long-range correlations be-
cause it provides a better mathematical representation for 000 02 02 0B 08 1.0
transport properties in real porous ro¢R$. For instance, the x (m)

permeability of sandstone can fluctuate over short distances,

and these fluctuations significantly affect any fluid flow  FiG. 1. () Typical streamlines of the velocity field in a corre-
through the pore space. Previous models assumed that thggd percolation clustetb) Velocity magnitudes probability distri-
fluctuations were random and without short-range correlapution averaged over three realizations of the percolation clusters.

tions. However, permeability is not the result of a simple(c) Tracer diffusion in the porous medium shown (&, for Pe
random process. Geologic processes, such as sand depositieth.4. We release a walker and the black dots indicate the sites
by moving water or wind, impose their own kind of correla- visited by the walker.

tions.

The mathematical approach we apply to describe this situwith 1/4 of the solid cell edge/|=/, =/=L/256, have
ation is correlated percolation. In the limit where COI'I'elatiOﬂSbeen adopted to discretize the go\/erning balance equations
are so small as to be negligiblé], a site at positiorr is  within the pore space domaja1]. Figure 1a) shows a typi-
occupied if the occupancy variablgr) is smaller than the ~cal velocity field, while Fig. 1b) shows the probability dis-
occupaton probabity &= th varisieai() are un-  1BU1E0 of he yeloly magnitudes averaged over e e
correlated random numbers with uniform distribution in the P y

interval [0,1]. To introduce long-range power-law correla- are well fit by a broad power law of the type1]
tions among the variables, we convolute the uncorrelated

. -, . . P(v NV*O.71. 1
variablesu(r) with a suitable power-law kerngll0], and V) @)

define a new set of occupancy variablgér) with long- Next we analyze the transport properties of a neutral
range power-law correlations that decay ras’, wherer  tracer moving in the fluid. We use a discrete random walk
=|r| (in the following we will sety=0.4). model for the tracer motion. Previous discrete particle mod-

We solve the full set of Navier-Stokes and continuity els[12] consider that the entrance probability to a region is
equations at the percolation threshold of a square lattice witproportional only to the flux. It has been sho\8)13] that
64X 64 cells and cell edgk=1 m. Grid element lengths these models fail when there is a broad distribution of ve-
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locities, where regions of small velocity coexist with regions 0.15
of large velocities. To circumvent this problem, we include
molecular diffusion in our discrete particle model according
to the Saffman theory of dispersion in porous media. We 0.10 + — Pe-1a4
define the walker motion as a competition between flow- —
driven convection and molecular diffusion. To allow for i—
comparison among different regimes of tracer dispersion, we
define a macroscopic Blet number as PeV//D,,, where 005
V=1 ml/s is the fluid velocity at the inlet boundary of the (a)
lattice. At a given positiom in the pore space, we define the
time scale for convection O == a6 8 B0 100 120
- t
te=/1Iv(r), 2
. e 10° .
and a time scale for diffusion oP°
il
, , s | o Pe=0.0005 s
ty=/"212D,=Pe /I[2V]. €) 10 Pe=0043 A
. . _ L ~ , | o Pe=0.26 P
Consider the walker at a site and fluid velocityv(r), $ 10 A Pe=14 g
. . . . . L) ke »
with four nearest neighbor sites. The probability of choosing ~ O e
each of the four nearest neighbor sites is defined according to A 40! O M 7T A
. e . vi S - &
the rates of convection and diffusion which are equal to the B o/ﬂ AT
inverse convection time and the inverse diffusion time, re- 10° %’//:,/;/4( B
spectively[3,13]. We call site 1 the nearest neighbor site e (b)
where the veIocitw(F) points to. Then the jumping rate to 10" L & - -
site 1 is 107 107 m) 10
x (m
Ri=1/f .+ 1hy. 4
1 c d ( ) 25 E .
The jumping rate to the rest of the sites is equal to the dif- E\ B=d2.41
fusion rate \i subdiffusion
R,=1ty (a=234 200 ¢ ]
a d (Cl.’— ’ 1)1 (5) —-‘? \\
. . e & N
since the tracer can access these sites only by diffusion. Thus = B ~log(Pe) i\ bl
the probability to jump to the nearest neighbor sites is 15 & I\
N ©
. 5%
=R Rg, a=1,...,4. 6 -
Pe / 2R © L bedlos s
100 107 107 10°
I1l. NUMERICAL SIMULATIONS Pe

= 1.4, so the value df, is such that diffusion only occurs in given system size and Pd .4, a\_/eraged over threg reallzatlo_ns of
regions of small fluid velocity. A typical tracer trajectory is € Percolation clusters, showing a non-Gaussian behator.
shown in Fig. 1c). We see that the tracer particle performs aMean value of the transit times as a function of the traverse distance
walk with Ion.g tr.ajectories following the streamlines of the x for different Pelet numbers, averaged over three realizations of
fluid followed by periods where it gets trapped in small Ve_the p’ercolation clustersc) Tran_sit_time exponent as a function of
locity zones. These “stagnant zones” in the pore space diffe}he Pelet number. The upper limit corresponds to the value of the
Significantly.from the dangling ends of the analogous elecexponent of the anomalous diffusion in correlated percolation clus-

ical bl X h £ the infini | d'ters dy, . The lower limit corresponds to the minimum path expo-
trical problem(i.e., the parts of the infinite cluster connecte nentd,;, [17], and in between those limits we find that our data can

by pnly one _site _to the backbo_}:eThe tracer. enters these o approximated by a logarithmic dependence with Pe.

regions by diffusion, and requires a long time to escape.

After escaping, the particle performs another trajectory folyraverse the system side from the inlet line, for a given
lowing the streamlines until it penetrates into the next smallbe—1 4. We find[Fig. 2@)] that the transit time probability
v_eIOC|ty_ reg|on._The tracer trajectory resembles a quasi-Onejensity for a fixedL and Pe has a non-Gaussian shape as
dimensional trajectory of “channels and blobs.” The “chan- fond in experiments and simulatiof2—4]. Moreover, we

nel and blobs™ picture is the analog for this problem of thefing that the average time required for the tracer to traverse a
traditional “links and blobs™ picture associated with anoma- given distancex from the inlet line, G<x<L, follows a

lous diffusion in percolation clustefd4-16. power law[Fig. 2(b)]
We analyze the probability density of transit tifaét) for

a given system sizk, i.e., the time required for the tracer to (t)~xP @)
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where 8=1.08 when Pe 1.4. fusion regime as well. However, due to the tortuosity of the

The transit time exponerg is not universal and depends uncorrelated percolation clusters at the threshold, the regions
on Pe[Fig. 2(b)]. In fact, we find that there is a regime of of low velocity where the walker is trapped are not present as
subdiffusion at low Pelet numbers wherg>2, and diffu- we found in the case of enhanced diffusion at higiti€te
sion dominates over convection. At highercRé numbers numbers in correlated clusters shown in Figc)1Thus, we
there is a transition to an enhanced diffusion regime domiconclude that the existence of the “channels and blobs”
nated by convection where<l3<2. Moreover, we expect structure found in the case of dispersion in correlated clusters
two limiting regimes. If convection dominates completely at high Pelet numbers is a by-product of the dynamical
(mechanical dispersignthen the tracer should follow the properties of the tracer moving in a broadly distributed ve-
minimum path along the spanning percolation cluster. Theocity field plus the geometrical properties of the particular
minimum path length’ ,, scales ag’,~x%min whered, i, is porous medium treated here. The compact features of long-
the fractal dimension of the minimum path distance betweemange correlated percolation clusters allows the tracer to per-
two points separated by a linear distancks]. If the tracer  form large steps following the streamlines of the fluid with-
moves with a constant velocity, we can identify the mini- out encountering obstacles during the random walk process.
mum path distance with the transit time, 8&-d,,,;,. This is
the lower limit of the transit time exponent, and we confirm
this prediction since we obtaig=d.,, when Pe is large IV. DISCUSSION
[Fig. 20)] [17]. | y o

The other limit at larger diffusivities—the anomalous dif- N summary, we find a transition from a subdiffusion re-
fusion casé16]—corresponds to the regime dominated com-gime to an enhanced diffusion regime as thel&enumber
pletely by diffusion, and the transit time scales(fs~x%, is increased. In the_ enhanced_d_|ffu5|on regime the trajectory
whered,, is the random walk fractal dimension. The value Of the tracer particle is reminiscent of a “channels and
d,, depends on the degree of correlation, wdtfp= 2.87 for bIob;” picture. Interestingly, this fact should be reIevgnt to
the uncorrelated percolation limig] and d,,=2.41[7] for elumdate the mass .and momentgm transport mechamsms re-
the correlated percolation problem we study=(0.4). We s_pon5|ble for the dlspersmn regime called “hc_JIdup pllsper-
see that the limiting cases of our calculations agree witt$ion” [2]. Tracer experiments indicate that this regime of
these predictiongFig. 2(c)]. Between these two limiting strong dependgnce_between dlsp.ers[on measuremen.ts and
cases, we find that the transit time exponent can be approXP_(:.cIet number is typical of percolationlike porous materials.
mated by
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