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Tracer dispersion in a percolation network with spatial correlations
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We analyze the transport properties of a neutral tracer in a carrier fluid flowing through percolationlike
porous media with spatial correlations. We model convection in the mass transport process using the velocity
field obtained by the numerical solution of the Navier-Stokes and continuity equations in the pore space. We
find that the resulting statistical properties of the tracer show a transition from a subdiffusion regime at low
Péclet number to an enhanced diffusion regime at high Pe´clet number.

PACS number~s!: 61.43.Gt, 47.55.Mh, 66.30.2h
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I. INTRODUCTION

The phenomenon of hydrodynamic dispersion—the
steady transport of a neutral tracer in a carrier fluid flow
through a porous material—has been widely investigated
the fields of petroleum and chemical engineering@1–4#. One
can identify different regimes of tracer dispersion accord
to the Pe´clet number Pe[vl /Dm , which is the ratio be-
tween the typical time for diffusionl 2/Dm and the typical
time for convectionl /v. Herev is the velocity of the carrier
fluid, l a characteristic length scale of the porous media,
Dm the molecular diffusivity of the tracer.

In the small-Pe´clet-number regime, molecular diffusio
dominates the way in which the tracer samples the flow fie
In the large-Pe´clet-number regime, also calledmechanical
dispersion, convection effects are significant; the tracer v
locity is approximately equal to the carrier fluid velocity, an
molecular diffusion plays little role. The tracer samples t
disordered medium by following the velocity streamlines.
a random walk picture, we may think of a tracer partic
following the direction of the velocity field, and taking step
of length l and durationl /v.

The classical approach to model dispersion in porous
dia is to consider microscopically disordered and mac
scopic isotropic and homogeneous porous materials. Un
these conditions, dispersion is said to beGaussianand the
phenomenon can be mathematically represented in term
the convection-diffusion equation@2#. This traditional for-
malism, which is valid for Euclidean geometries, cannot
adopted to describe the global behavior of hydrodyna
dispersion in heterogeneous systems. Specifically, in the
of percolation porous media, the breakdown of the mac
scopic convective-diffusion description is a direct con
quence of the self-similar characteristic of the void spa
geometry.

The movement of a tracer in a fluid flow field with
broad velocity distribution is an interesting phenomenon t
displays a rich variety of physical behaviors. Consider, e
fluid flow in percolation clusters near the percolati
threshold—a model system relevant to a porous med
with stagnant small-velocity zones that are linked with larg
velocity zones. In this case the typical time for convecti
l /v is without bound since the velocity can be arbitrar
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small in some fluid elements of the void space. Saffm
showed@1# that the mean square duration of a tracer step
not finite but diverges logarithmically unless an upper cut
is introduced into the typical time step. This upper cutoff
imposed by the mass transport mechanism of molecular
fusion.

Molecular diffusion is expected to affect the tracer moti
in two ways@1#.

~i! A quantity of material may cross from one streamli
with fluid velocity v to another bylateral diffusion if the
time step for convectionl i /v is larger thant1, where t1

5l '
2 /2Dm is the characteristic time for molecular diffusivit

effects to become appreciable@5# and l i and l ' are the
longitudinal and lateral pore lengths, respectively~with re-
spect to the flow direction! @1#. Thus, if l i /v@t1, the tracer
has enough time to diffuse across the pore, and the time
associated with such a move isDt5t1. Whenl i /v!t1, the
time duration of a convective step is smaller than the ti
required for molecular diffusion, and the tracer moves w
the carrier fluid taking a step of durationDt5l i /v.

~ii ! An amount of material may be transported by diff
sion along the pore. The same considerations as in point~i!
lead to a time stepDt5l i /v in which convection dominates
when l i /v!t05l i

2/2Dm . Here the typical length scale i
the longitudinal length of the porel i . If l i /v@t0, diffusion
dominates and the tracer takes a time stepDt5t0.

Here we propose a model of tracer dispersion in a por
medium. The porous medium is composed of blocks of i
permeable material that occupy, with a given probabilityp, a
square lattice. We consider a lattice at the site percola
threshold, so an incipient spanning cluster is formed t
connects the two ends of the lattice. Previous studies m
eled the convective local ‘‘bias’’ for the movement of th
neutral tracer in the porous media assuming Stokes flow@2#.
Even at macroscopically small-Reynolds-number conditio
this assumption might be violated in real flow through p
rous media, especially in the case of heterogeneous mate
~e.g., percolationlike structures! where a broad distribution
of pore sizes can lead to a broad distribution of local flux
As a consequence, inertial effects might be locally releva
To avoid this problem, we use the steady-state velocity fi
obtained by solving the full set of Navier-Stokes in the p
583 ©2000 The American Physical Society
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584 PRE 61MAKSE, ANDRADE, JR., AND STANLEY
colation geometry. Then we study the transport propertie
a dynamically neutral tracer moving in the flow field.

II. MODEL OF TRACER DISPERSION IN A POROUS
MEDIUM

We treat the competition between the effects of conv
tion and diffusion. The velocity field presents a broad sca
invariant power-law distribution of magnitude values, a
we find that there are regions of very small velocity in whi
the tracer can be trapped. If convection is important,
tracer follows the streamlines in the flow field. When a ve
small velocity region is reached, molecular diffusion effe
cannot be neglected, since by diffusion the tracer may ac
the stagnant zones—where it then spends a long time.
shall see that the statistical properties of the tracer—e.g.
first-passage time and the root mean square displaceme
show a transition from a subdiffusion regime to an enhan
diffusion regime as the Pe´clet number is increased. The e
istence of the stagnant zones is also related to the geom
cal properties of the medium—whether it is correlated
uncorrelated in the occupancy variables of the percola
cluster.

We start by describing the disordered medium and
velocity field. Our basic model of a porous medium is
percolation model at threshold@6# modified to introduce cor-
relations among the occupancy units@7#. Transport in porous
media with a broad distribution of conductance values
dominated by those regions where the conductances
larger than some critical value. This critical value corr
sponds to the smallest conductance such that the set of
ductances above the threshold forms a conducting span
cluster @8#. This cluster is the critical percolation cluster
the threshold which we use in our simulations.

We assume the existence of long-range correlations
cause it provides a better mathematical representation
transport properties in real porous rocks@9#. For instance, the
permeability of sandstone can fluctuate over short distan
and these fluctuations significantly affect any fluid flo
through the pore space. Previous models assumed that
fluctuations were random and without short-range corre
tions. However, permeability is not the result of a simp
random process. Geologic processes, such as sand depo
by moving water or wind, impose their own kind of correl
tions.

The mathematical approach we apply to describe this s
ation is correlated percolation. In the limit where correlatio
are so small as to be negligible@6#, a site at positionrW is
occupied if the occupancy variableu(rW) is smaller than the
occupation probability 0<p<1; the variablesu(rW) are un-
correlated random numbers with uniform distribution in t
interval @0,1#. To introduce long-range power-law correl
tions among the variables, we convolute the uncorrela
variablesu(rW) with a suitable power-law kernel@10#, and
define a new set of occupancy variablesh(rW) with long-
range power-law correlations that decay asr 2g, where r

[urWu ~in the following we will setg50.4).
We solve the full set of Navier-Stokes and continu

equations at the percolation threshold of a square lattice
64364 cells and cell edgeL51 m. Grid element lengths
of
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with 1/4 of the solid cell edge,l i5l '5l 5L/256, have
been adopted to discretize the governing balance equa
within the pore space domain@11#. Figure 1~a! shows a typi-
cal velocity field, while Fig. 1~b! shows the probability dis-
tribution of the velocity magnitudes averaged over three
alizations of the percolation clusters. We find that the d
are well fit by a broad power law of the type@11#

P~v !;v20.71. ~1!

Next we analyze the transport properties of a neu
tracer moving in the fluid. We use a discrete random w
model for the tracer motion. Previous discrete particle m
els @12# consider that the entrance probability to a region
proportional only to the flux. It has been shown@3,13# that
these models fail when there is a broad distribution of

FIG. 1. ~a! Typical streamlines of the velocity field in a corre
lated percolation cluster.~b! Velocity magnitudes probability distri-
bution averaged over three realizations of the percolation clus
~c! Tracer diffusion in the porous medium shown in~a!, for Pe
51.4. We release a walker and the black dots indicate the s
visited by the walker.
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PRE 61 585TRACER DISPERSION IN A PERCOLATION NETWORK . . .
locities, where regions of small velocity coexist with regio
of large velocities. To circumvent this problem, we inclu
molecular diffusion in our discrete particle model accordi
to the Saffman theory of dispersion in porous media. W
define the walker motion as a competition between flo
driven convection and molecular diffusion. To allow fo
comparison among different regimes of tracer dispersion,
define a macroscopic Pe´clet number as Pe[Vl /Dm , where
V51 m/s is the fluid velocity at the inlet boundary of th
lattice. At a given positionrW in the pore space, we define th
time scale for convection

tc[l /v~rW !, ~2!

and a time scale for diffusion

td[l 2/2Dm5Pe l /@2V#. ~3!

Consider the walker at a siterW and fluid velocityv(rW),
with four nearest neighbor sites. The probability of choos
each of the four nearest neighbor sites is defined accordin
the rates of convection and diffusion which are equal to
inverse convection time and the inverse diffusion time,
spectively @3,13#. We call site 1 the nearest neighbor s
where the velocityv(rW) points to. Then the jumping rate t
site 1 is

R151/tc11/td . ~4!

The jumping rate to the rest of the sites is equal to the
fusion rate

Ra51/td ~a52,3,4!, ~5!

since the tracer can access these sites only by diffusion. T
the probability to jump to the nearest neighbor sites is

pa[RaY (
b51

4

Rb , a51, . . . ,4. ~6!

III. NUMERICAL SIMULATIONS

We first discuss the case of the large Pe´clet number, Pe
51.4, so the value oftd is such that diffusion only occurs in
regions of small fluid velocity. A typical tracer trajectory
shown in Fig. 1~c!. We see that the tracer particle performs
walk with long trajectories following the streamlines of th
fluid followed by periods where it gets trapped in small v
locity zones. These ‘‘stagnant zones’’ in the pore space di
significantly from the dangling ends of the analogous el
trical problem~i.e., the parts of the infinite cluster connect
by only one site to the backbone!. The tracer enters thes
regions by diffusion, and requires a long time to esca
After escaping, the particle performs another trajectory f
lowing the streamlines until it penetrates into the next sm
velocity region. The tracer trajectory resembles a quasi-o
dimensional trajectory of ‘‘channels and blobs.’’ The ‘‘cha
nel and blobs’’ picture is the analog for this problem of t
traditional ‘‘links and blobs’’ picture associated with anom
lous diffusion in percolation clusters@14–16#.

We analyze the probability density of transit timeP(t) for
a given system sizeL, i.e., the time required for the tracer t
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traverse the system sizeL from the inlet line, for a given
Pe51.4. We find@Fig. 2~a!# that the transit time probability
density for a fixedL and Pe has a non-Gaussian shape
found in experiments and simulations@2–4#. Moreover, we
find that the average time required for the tracer to travers
given distancex from the inlet line, 0,x,L, follows a
power law@Fig. 2~b!#

^t&;xb ~7!

FIG. 2. ~a! Probability density of the transit timeP(t) for a
given system size and Pe51.4, averaged over three realizations
the percolation clusters, showing a non-Gaussian behavior.~b!
Mean value of the transit times as a function of the traverse dista
x for different Péclet numbers, averaged over three realizations
the percolation clusters.~c! Transit time exponent as a function o
the Péclet number. The upper limit corresponds to the value of
exponent of the anomalous diffusion in correlated percolation c
ters dw . The lower limit corresponds to the minimum path exp
nentdmin @17#, and in between those limits we find that our data c
be approximated by a logarithmic dependence with Pe.
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586 PRE 61MAKSE, ANDRADE, JR., AND STANLEY
whereb.1.08 when Pe51.4.
The transit time exponentb is not universal and depend

on Pe@Fig. 2~b!#. In fact, we find that there is a regime o
subdiffusion at low Pe´clet numbers whereb.2, and diffu-
sion dominates over convection. At higher Pe´clet numbers
there is a transition to an enhanced diffusion regime do
nated by convection where 1,b,2. Moreover, we expec
two limiting regimes. If convection dominates complete
~mechanical dispersion!, then the tracer should follow th
minimum path along the spanning percolation cluster. T
minimum path lengthl min scales asl min;xdmin wheredmin is
the fractal dimension of the minimum path distance betw
two points separated by a linear distancex @6#. If the tracer
moves with a constant velocity, we can identify the min
mum path distance with the transit time, sob5dmin . This is
the lower limit of the transit time exponent, and we confir
this prediction since we obtainb*dmin when Pe is large
@Fig. 2~c!# @17#.

The other limit at larger diffusivities—the anomalous d
fusion case@16#—corresponds to the regime dominated co
pletely by diffusion, and the transit time scales as^t&;xdw,
wheredw is the random walk fractal dimension. The valu
dw depends on the degree of correlation, withdw52.87 for
the uncorrelated percolation limit@6# and dw52.41 @7# for
the correlated percolation problem we study (g50.4). We
see that the limiting cases of our calculations agree w
these predictions@Fig. 2~c!#. Between these two limiting
cases, we find that the transit time exponent can be appr
mated by

b~Pe!; log~Pe!. ~8!

We also perform simulations on uncorrelated percolat
clusters. We find an enhanced diffusion regime and a sub
lin
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fusion regime as well. However, due to the tortuosity of t
uncorrelated percolation clusters at the threshold, the reg
of low velocity where the walker is trapped are not presen
we found in the case of enhanced diffusion at high Pe´clet
numbers in correlated clusters shown in Fig. 1~c!. Thus, we
conclude that the existence of the ‘‘channels and blob
structure found in the case of dispersion in correlated clus
at high Pe´clet numbers is a by-product of the dynamic
properties of the tracer moving in a broadly distributed v
locity field plus the geometrical properties of the particu
porous medium treated here. The compact features of lo
range correlated percolation clusters allows the tracer to
form large steps following the streamlines of the fluid wit
out encountering obstacles during the random walk proc

IV. DISCUSSION

In summary, we find a transition from a subdiffusion r
gime to an enhanced diffusion regime as the Pe´clet number
is increased. In the enhanced diffusion regime the trajec
of the tracer particle is reminiscent of a ‘‘channels a
blobs’’ picture. Interestingly, this fact should be relevant
elucidate the mass and momentum transport mechanism
sponsible for the dispersion regime called ‘‘holdup disp
sion’’ @2#. Tracer experiments indicate that this regime
strong dependence between dispersion measurements
Péclet number is typical of percolationlike porous materia
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