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Abstract. The linear and nonlinear elastic properties of gran- 
ular media are analyzed within the context of effective medium 
theories, as well as with numerical molecular dynamic sim- 
ulations, assuming the validity of the Hertz-Mindlin theory 
at the single contact level. Them is a crucial distinction be- 
tween force laws which are path independent, leading to a 
hyper-elastic effective medium theory, and those which are 
path dependent, for which the deformation history must be 
followed explicitly. The effective medium theories provide 
a reasonable description of existing experimental data, con- 
sidered as a function of applied stress, but there are signifi- 
cant discrepancies. Numerical simulations resolve the ques- 
tion as to whether the problem lies with the treatment of the 
individual grain-grain contact or with the effective medium 
approximation (ema). We find that the problem lies princi- 
pally with the latter: The bulk modulus is weB-described by 
the ema but the shear modulus is not, principally because the 
ema does not correctly allow for the grains to relax from the 
affine motion assumed by the ema. 
© 2001 Elsevier Science Ltd. All rights reserved. 

1 Introduction 

The elastic properties of granular aggregates, such as sed- 
imentary rocks, can be enormously nonlinear as compared 
with the properties of non-porous materials (Winkler and Liu 
,1996). The end member of  such systems may be taken to 
be a loose, "unconsolidated", aggregate of glass beads which 
acquire a stiffness solely as a result of applied stress. This is 
because if two grains are just touching, the force, considered 
as a function of displacement, does not initially grow linearly, 
as with most systems, but it has a power law behavior [Eqs. 
(1) and (2) below]. Aside from posing an interesting problem 
in the physics of disordered systems, these systems are un- 
usually nonlinear in their response and they can exhibit path 
dependence. By this we mean that the work done in deform- 
ing the system can depend upon whether one first compresses 
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the system, then shears it, or first shears then compresses, or 
compresses and shears simultaneously, etc. The result de- 
pends upon the path taken in {ei~ } space and not just on the 
final state of strain {e(~ (final)}. 

Here we review some recent theoretical research we have un- 
dertaken in an attempt to understand these systems. We first 
discuss effective medium theories of the elastic properties, 
then we present our molecular dynamic simulations, and we 
end with a brief summary. 

2 Effective Medium Theories 

The starting point is the behavior of a single grain-grain con- 
tact, which we assume to be describable by the Hertz-Mindlin 
theory and variations thereof. The normal and transverse 
forces, fn and ft may be written in terms of the relative nor- 
mal and transverse displacements of two spheres, w and s: 

2 
f,~ = -~ Cr, R1/2W a/2 (1) . 

_ / 

A f t  = C~( Rw)I/2 A s  . (2) 

The prefactors Cn = 4G/ ( I  - v) and Ct = 8G/(2 - v) 
are defined in terms of the shear modulus G and the Pois- 
son's ratio v of the individual particles. R is the radius of  the 
grain. The normal component of the force, fn, is a simple 
function of the relative positions of the two spheres, i.e. it is 
a simple function of w. The transverse force, ft, is written 
in differential form to emphasize that its numerical value de- 
pends upon the trajectory taken in (w, s) space. In general, 
this part of the force is said to be path dependent. See Norris 
and Johnson (1997) and references therein. 

The basic idea of the effective medium theories relevant to 
these problems is that the macroscopic work done in deform- 
ing the system is set equal to the sum of the work done on 
each grain-grain contact and that the latter is replaced by a 
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suitable average. There are two assumptions: (1) The cen- 
ter of each grain displaces according to the dictates of the 
macroscopic strain 

ui = ~sXs , (3) 

where X is the initial position of the center of the grain. 
When the deformation is describable by a symmetric defor- 
mation, V × u = 0, none of the grains rotate. This is called 
the "assumption of affine motion". (2) Each grain experi- 
ences essentially the same environment as any other grain. 
On average, the distribution of contacts is spherically sym- 
metric. Under these assumptions, the total work done on 
the system may be written in terms of angular averages of 
the work done on a single contact. This sort of "effective 
medium theory" is simpler than the conventional Brugge- 
mann type of ema (Bruggemann, 1935) in that it is more 
analogous to a simple average of the non-linear spring con- 
stants. 

As written, the transverse force, Eq. (2), was derived un- 
der the assumption that once the grains are pressed together, 
there is perfect sticking of the contact circles. This force 
is path dependent, meaning that whether the grains are first 
pressed and then sheared, or vice-versa, makes a difference 
in the work done on the contact. The numerical value of 
ft  depends upon the path taken in (w, s) space. Were we 
to assume, on the other hand, that there is perfect slippage 
of the particles, ft = 0 instead of Eq. (2), then the result- 
ing forces are path independent. The practical result of this 
path independent assumption is that the resulting work done 
in deforming the system is now a function of the state of 
strain and is not dependent upon the way in which the strain 
is applied. The path independent forces lend themselves to 
the development of a macroscopic strain energy density, and 
thus to a well-defined theory of hyper-elasticity, whereas the 
path dependent forces need to be treated specially, We con- 
sider these two cases in turn. A cautionary note: In reality 
the contact may slip over an annular ring if the coefficient 
of friction is finite (Mindlin and Deresiewicz, 1953). In the 
limit of infinitesimal As we either neglect the slippage alto- 
gether or we assume complete slip, as the case may be. In 
any case, the forces am conservative in the sense that if the 
deformation path, whatever it may be, is reversed exactly, the 
total work done is zero. 

2.1 Path Independent Forces 

If the work done on a single contact is independent of the 
order in which the normal and transverse forces are applied 
i.e. they are path independent, then the system as a whole is 
said to be hyper-elasfic. An energy density can be defined in 
terms of the macroscopic strain tensor, eij, andit can usefully 
be expanded in powers thereof. For any isotropic system this 
expansion takes the form (Landau and Lifshitz, 1970) 
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Fig. 1. Path independent ema predictions of pressure dependent sound 
speeds of granular media with welded contacts. The upper three curves and 
the upper data set refer to eompressional wave speeds, whereas the lower 
curves and data set refer to transverse wave speeds. The experimental data 
of Domenico (1977) should be compared against the b = 0 curves. A coor- 
dination number Z = 9 was assumed. From Norris and Johnson (1997). 

Here, p is the static pressure and the strain tensor, eij, is mea- 
sured relative to the system in its reference state at pressure 
p. The second order elastic constants are K,  the bulk modu- 
Ins, and p, the shear modulus; they determine the speeds of 
small amplitude sound: 

Vp = x / [K  + (4/3)Iz]/p (5) 

is the compressional sound speed and 

Vs = ~ (6) 

is the shear speed. (p is the density.) The third-order elastic 
constants, A, B, C describe how the speeds of sound change 
to first order in additional applied stress, A~rlj, and they also 
describe such nonlinear effects as second harmonic genera- 
tion, shock wave formation, etc. For the path independent 
model described above (i.e. when we set ft = 0), it is 
straightforward to carry out this expansion to derive analytic 
expressions for the various modulii (Norris and Johnson, 
1997). Indeed, the path independent models can be gener- 
alized slightly to include those in which the beads are first 
welded together over a radius b > 0 (Digby, 1981). Theo- 
retical predictions of the speeds of sound from this path inde- 
pendent model for different values of b are plotted in Fig.(1), 
taken from Norris and Johnson (1997). One of the third or- 
der constants from this model is plotted in Fig.(2). (Here, the 
third order constants are in the ratio A : B : C :: 8 : 4 : 1 so 
it is necessary to plot only one of them.) 

For the case in which b = 0 (i.e. unconsolidated beads) the 
ema predictions can be simply expressed as functions of the 
pressure: 

K = ,--~-_ [(1 - ¢)Z] 2/3 (7) 
L 6'. J 
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Fig. 2. Path independent ema for one of  the 3rd order elastic constants of 
frictionless glass beads, as a function of confining pressure. 

c,.< r6 .pl 
# = 2--~[(1 - ¢)Z]2/3 L On J (8) 

co 
A = - 7--~ [ ( i  - ¢)Z] '1/3 (9) 

LOnJ 
Here, Z is the average coordination number and ¢ is the 
porosity. 

From Equations (7)-(9) as well as from Figures (1) and (2), 
we see that, for unconsolidated beads, the second order con- 
stants decrease to zero as the confining pressure decreases to 
zero but the third order (and higher,) elastic constants actu- 
ally diverge. It is in this sense that unconsolidated granular 
media can be said to be extremely nonlinear. The presence 
of a Welded contact, b > 0, acts to cut-offthe divergence, but 
even so these systems can be orders of magnitude more non- 
linear than ordinary, non-granular materials, such as metals, 
glasses, plastics, etc., for which the third order constants are 
of the same order of magnitude as the second. 

2.2 Path Dependent Forces 

When the transverse force is given by Eq.(2), the work done 
in deforming the system is dependent upon the order (path) 
in which this is done. An expansion such as Eq.(4) therefore 
does not exist. Nonetheless, it is possible to develop an ef- 
fective medium theory in which one keeps track of the order 
(path) in which the deformation is applied. The underlying 
idea is the same as in Eq, (4) in the sense that one looks at 
the work done on the system as a function of additional in- 
cremental strain starting from a specific state of stress/strain. 
By equating the macroscopic expression for this work to the 
sum of the work done in all the individual contacts, one can 
derive expressions, which are path dependent, for the stress, 
the 2rid order elastic constants, and quantities which gener- 
alize the 3rd order constants. The resulting stress tensor, a~j, 
depends upon the path taken in arriving at the final state of 
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Fig. 3. A comparison of the experimentally determined speeds of sound in 
a uniaxial strain test, as a function of applied stress. The solid symbols ar e  

compressional speeds parallel and perpendicular to the stress direction, and 
the open symbols are the shear speeds, parallel to the stress direction and 
perpendicular to it, both polarizations. The solid lines are the pre4icfions of 
the ema. From Johnson et aL (1998). 

strain, ei~. As it turns out, the second order elastic constants 
are in fact, well-defined path independent quantities which 
depend only upon the final state of strain. In a typical ex- 
periment, however, the sound speeds may be measured as a 
function of applied stress, aq ,  not applied strain, eij, and so 
the sound speeds, considered as a function of applied stress, 
depend upon the order in which those stresses are applied. If  
the deformation path can be parameterized by some known 
functions, {elj(~)} where ~ is a convenient parameter, the 
relationship between sound speeds and applied stress can be 
derived (Norris and Johnson, 1997). 

For the special case of loose beads in which the system is 
hydrostatically compressed to its final pressure, p, the ema 
expressions for K and # are particularly simple. K is un- 
changed from Eq.(7) and # is changed by virtue of the trans- 
verse forces: 

o,. 1 p6.p],i3 
K= 1--~[ (  - - ¢ ) Z ]  2/3 [ O n j  (10) 

c.  + (3/2)c, [(i - ¢)z]213 [6 p] 1/3 
u = L o .  j 

(11) 

We see that K is predicted to be independent of Ct an d # is 
predicted to be linearly dependent upon C,, a point to which 
we return later. 

The ema can be applied to any stress protocol, not just hy- 
drostatic stress. In Hg. (3) we show the results of  measure- 
ments of sound speeds on loose glass beads confined to a 
rigid cylinder. This is the so-called uniaxial strain test. The 
speeds are plotted as a function of applied axial stress, aas. 
We show the predictions of  the effective medium theory, in 
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which certain reasonable assumptions about some of the pa- 
rameters were made. Specifically, it is assumed that after the 
sample is cycled several times, as in the actual experiments, 
there is a remanent hydrostatic strain, with numerical value 
e, as indicated in Figure (3). See (Johnson et al. , 1998) 
for details. We see that the application of non-hydrostatic 
stress breaks the symmetry of the system, with the result that 
the speed of a longitudinal wave traveling along the direc- 
tion of the applied stress increases more rapidly than that 
propagating perpendicular to it. Additionally, a transverse 
wave propagating perpendicular to the direction of applied 
stress can have two inequivalent polarizations each of which 
is different than that of a transverse wave parallel to the di- 
rection of applied stress. (This effect is sometimes referred 
to as shear-wave splitting.) The effective medium theory is 
in rough accord with the experimental data. 

3 Molecular Dynamics  Simulations 

With reasonable choices of the relevant parameters, the ef- 
fective medium theories described above can give a good 
approximate description of the acoustic properties of gran- 
ular media, as in Fig. (1), but there are problems, even for 
the simplest case of unconsolidated beads. (1) The effective 
medium theory predicts that the second order modulii vary 
with confining pressure as pl/3, regardless of the values of 
coordination number, Z, and regardless of the values of Cn 
or Ct. It is clear from Figure (1) that the real data do not obey 
this power law. (2) Absent a molecular dynamics simulation, 
one does not know the appropriate value of the average co- 
ordination number, Z, to use in Eqs. (10) and (11). (3) The 
ratio If/#, or, equivalently Vp/Ve, is predicted from Eqs.(10) 
and (11) to be independent of pressure. Experimentally the 
ratio K/#  is indeed roughly constant but with a value which 
is intermediate between the two ema predictions, Eqs.(7) and 
(8) on the one hand and Eqs.(10) and (11) on the other. Thus 
the implication is that Ct (in Eq.(11)) is much smaller in real 
systems than expected from the Mindlin theory, Eq.(2), or 
that the ema is wrong. 

These facts have motivated us to undertake molecular dy- 
namics simulations. One starts with a random distribution 
of a large number of spheres in a unit cell which is period- 
ically repeated throughout space. The equations of motion 
for each sphere am numerically integrated using the forces 
given by Eqs. (1) and (2); the rotational motion is accounted 
by the torques implied by Eqs. (1) and (2). In addition, a vis- 
cous damping force is added, so that the particles eventually 
come to rest if the dimensions of the unit cell are held con- 
stant. The positions, velocities, and forces on all the spheres 
are continually updated until certain convergence criteria are 
satisfied. The first step is to compress the system so that a 
dense random packing of spheres is established correspond- 
ing to a predetermined value of the pressure. Next, an incre- 
mental compression or shear is applied to the unit cell and 
the change in the stress tensor is measured/computed, once 
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Fig. 4. Pressure dependence of the elastic modutii from molecular dynamics 
simulations, experiments, and path dependent ema: (a) bulk modulus, and 
Co) shear modulus. The data are from Domenico (1977), Yin (1993), and 
Makse, etaL (1999). 

the system re-equilibrates. In this manner the bulk and shear 
modulii, respectively, can be determined for the system at 
each confining pressure. See Makse, et al. (1999) for details. 

In Figure (4) we show the existing experimental data for K 
and # on loose glass beads along with predictions of the ef- 
fective medium theory, Eqs. (10) and (11). From the simu- 
lations we find that the numerical value ofthe average coor- 
dination number is Z ~ 6 (not Z = 9 as in Figure (1)) for 
pressures less than 100 MPa, so this is the value we use in 
Eqs. (10) and (11). We also show the results for our sim- 
nlations. Although there is scatter within and disagreement 
between the different data sets, we see immediately that the 
simulations, the effective medium theory, and the data are 
in reasonable agreement for the bulk modulus, K. The ex- 
perimental data and the simulations are in reasonable agree- 
ment for #. The ema, however, significantly over-predicts #, 
Our conclusions are that the assumption of the Hertz-Mindlin 
contact law, Eqs. (1) and (2), is not seriously in error, the ema 
is quite accurate in predicting K, and it is quite inaccurate in 
predicting #. 

According to the ema, the transverse force, ft, contributes 
only to the shear modulus and not to the bulk modulus. Thus 
we are motivated to examine molecular dynamic simulations 
in which Ct in Eq. (2) is replaced by aCt where the di- 
mensionless parameter a is varied from 0 to 1. The results 
for a confining pressure of p = 100kPa are shown in Figure 
(5), along with the predictions of Eqs.(10) and (1 I). The 
simulations confirm that K is essentially independent of the 
strength of the transverse force. Astonishingly, the shear 
modulus is extremely sensitive in that it (nearly) vanishes as 
a ~ 0, in sharp contrast to the prediction of Eq.(1 I). What 
is the most serious problem with the ema? We believe it to 
be the "afline assumption" we discussed earlier. Thus, we 
redo the numerical simulations by forcing each ball to tram- 



H. A. Makse et  al .:  Failure of Effective Medium Theory in Granular Materials 111 

00 s~ ,#'*w" j 

200 '~'" ,,.~" 

100 ~" / H I . t M D  __ . 
] 7 "  [] t3 K MI>-affine motion 
[ ,,el" © ©g MD-affine motion 

~ / /  - K E M T  

o . . . . . . . . . . . . . . .  i . 
o.o o. ,  , .o 

(Z 

Fig, 5. Bulk modulus, K, and shear modulus,/J, vs. a for a fixed pres- 
sure, p=lOOkPa. The effective medium theory is compared against the un- 
restricted numerical simulations. For comparison, we also show the results 
of simulations in which the displacement of each grain is restricted to affine 
motion and rotation is disallowed. 

late according to Eq. (3) and not rotate at all. Finally, these 
simulations, which are also shown in Fig. (5) are indeed in 
agreement with the ema predictions, Eq.(11). What is ev- 
idently happening in the unconstrained simulations, and in 
the experiments, is that the beads in the immediate neighbor- 
hood of each grain move around relative to the central grain 
in such a way that if there are central forces only (U~ = 0), 
there is a nearly complete relaxation of the system to an ap- 
plied shear. The system is a fluid, or nearly so. 

4 Conclusions 

We have found that: (1) The Hertz-Mindlin contact theory is 
a good approximation to the actual grain-grain contact law in 
real glass bead systems subjected to a known stress. (2) The 

very simple effective medium approximation gives a reason- 
" able, if approximate, description of the response of the sys- 
tem. (3) There is a big difference between systems in which 
the forces may be presumed to be conservative and path in- 
dependent and those for which the forces are path dependent. 
In the former, a hyper-elastic theory of the elastic constants 
may be developed whereas in the latter the third order (and 
higher oi'der) constants are undefinable. (4) The molecular 
dynamic simulations establish the validity of the effective 
medium theory for the bulk modulus and also establish that 
the ema for the shear modulus is in serious error. The prob- 
lem lies with the inability of the ema to correctly treat the 
relaxation of the surrounding grains when a shear deforma- 
tion is applied. 
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