PHYSICAL REVIEW E 66, 046304 (2002

Traveling length and minimal traveling time for flow through percolation networks
with long-range spatial correlations

A. D. Araljo,*? A. A. Moreira® H. A. Makse® H. E. Stanley and J. S. Andrade, Jr.
!Departamento de Bica, Universidade Federal do Cear&0451-970 Fortaleza, Ceardrazil
’Departamento de Bica, Universidade Vale do Acara62040-370 Sobral, Cear®razil
3Department of Physics, City College of New York, New York, New York 10031-9198
“Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215
(Received 22 April 2002; published 21 October 2p02

We study the distributions of traveling lengttand minimal traveling time,;,, through two-dimensional
percolation porous media characterized by long-range spatial correlations. We model the dynamics of fluid
displacement by the convective movement of tracer particles driven by a pressure difference between two fixed
sites(“wells” ) separated by Euclidean distarrcd=or strongly correlated pore networks at criticality, we find
that the probability distribution functiorB(l) andP(t,,;,) follow the same scaling ansatz originally proposed
for the uncorrelated case, but with quite different scaling exponents. We relate these changes in dynamical
behavior to the main morphological difference between correlated and uncorrelated clusters, namely, the
compactness of their backbones. Our simulations reveal that the dynamical scaling exppraamtsl, for
correlated geometries take values intermediate between the uncorrelated and homogeneous limiting cases,

wherel* ~r% andt*. ~r%, andl* andt?,, are the most probable valueslo&ndt,,;,, respectively.
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[. INTRODUCTION ductance such that the set of conductances above this thresh-
old forms a network that preserves the global connectivity of
Fluid transport in porous media is of central importance tothe system. In percolation terminology, this is equivalent to
problems in petroleum exploration and productidn-4].  the conducting spanning cluster.
The geometry of an oil field can be very complex, displaying The extent to which the self-similar characteristic of the
heterogeneities over a wide range of length scales from cereritical percolation geometry can modify the displacement
timeters to kilometer$5]. The most common method of oil process is unclear. Several studies have been devoted to the
recovery is by displacement. Typically, water or a miscibleinvestigation of the displacement process through percola-
gas (carbon dioxide or methahes injected in a well(or  tion porous media at criticality{10,11. More recently
wells) to displace oil to other wells. Ultimately the displac- [12,13, the dynamics of viscous displacement through per-
ing fluid will break through into a production well where it colation clusters has been investigated in the limiting condi-
must be separated from the oil. At this point, the rate of oiltion of unit viscosity ratiom= w4 /u,, whereu, andu, are
production decreases. For economic purposes, it is importatite viscosities of the injected and displaced fluids, respec-
to predict when the injected fluid will break through. tively. In this situation, the displacement front can be mod-
When modeling the process of oil recovery, an open queseled by tracer particles following the streamlines of the flow,
tion is the effect of the connectedness of the porous mediurand the corresponding distributions of shortest path and
on the dynamical process of fluid displacement. If the poreminimal traveling time closely obey a scaling anddt4,15.
space is so poorly connected as to be considered macroscofitbsequently[16], the dynamics of viscous penetration
cally heterogeneous, one expects the overall behavior of thitarough two-dimensional critical percolation networks has
flowing system to display significant anomalies. For ex-been investigated in the limiting case of a very large viscos-
ample, it is common to investigate the physics of disorderedty ratio, m—oo. The results from this study indicate that the
media at a marginal state of connectivity in terms of thedistribution of breakthrough time follows the same scaling
geometry of the spanning cluster at the percolation thresholdehavior observed for the case=1 [12,13. As a conse-
[6,7]. First, it is clearly an advantage to use the percolatiorquence, it has been suggesf#€] that the process of viscous
model because a comprehensive set of exactly and numeuisplacement through critical percolation networks might
cally calculated critical exponents is available to describe notonstitute a single universality class, independennof
only its geometrical features, but also its dynamigedns- The spatial distributions of porosity and permeability in
port) properties. Second, the application of this geometricateal rocks are often close to random. However, one cannot
paradigm can be consistently justified through “the criticalassume that the nature of their morphological disorder is
path method”[8], a powerful approximation that has been necessarily uncorrelated, i.e, the probability for a site to be
successfully use@9] to estimate transport properti€és.g.,  occupied is independent of the occupancy of other sites. In
permeability and electrical conductivityf disordered po- fact, the permeability of some rock formations can be con-
rous materials. Accordingly, the transport in disordered mesistently high over extended regions of space and low over
dia with abroad distribution of conducting elements should others, characterizing in this way a correlated strucfGie
be dominated by those regions where the conductances alethe case of sandstone, for example, the permeability is not
larger than some critical value. This value is the largest conthe result of an uncorrelated random process. Sand deposi-
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FIG. 1. (a) A typical percolation latticé. = 256 for the uncorrelated case. Heavy lines correspond to the backbone, gray lines to dangling
ends, and light gray lines to isolated “island&ionspanning clusters(b) The same as iffi@), but for the correlated case/€0.5).

tion by moving water or windland other mechanisms of wherey=2 is the uncorrelated case and=0 corresponds
geological scalenaturally imposes its own kind of correla- to the maximum correlation. The correlated variablgs)
tions. A suitable mathematical approach to represent the gere used to define the occupaniy) of the sites
ometry of the pore spaces and the corresponding transport
properties is correlated percolatiph7—21]. This approach
has been successfully used to model permeability fluctua-
tions and also to explain the scale dependence of hydrody- ] ]
namic dispersion coefficients in real porous material. where ® is the Heaviside function and the paramegeis
Our aim here is to extend the investigation on the dischosen to produce a lattice at the percolation threshold. In
placement dynamics between two fluids through two-Figs. Xa,b we show typical backbones extracted from un-
dimensional percolation clusters at criticalfty2,13 to the  correlated and corre!ated_ networks._ Long-range correlations
case where the pore space displays long-range spatial corfiéL site occupancy give rise to variations in the structural
lations. We focus on the case of viscous penetration with twgharacteristics of the conducting backb¢€]. To illustrate
immiscible fluids of unit viscosity ratiori=1) to study the this effect quantitatively, Fig. 2 compares the fractal dimen-
effect of long-range correlations on the distributions of trav-sion of the conducting backbone calculated for uncorrelated
eling length and minimal traveling time. and for correlated networks with=0.5. Indeed, the fractal
The organization of the paper is as follows. In Sec. Il, WedimenSion of the backbone is Significantly Iarger for the cor-
present the mathematical model to simulate long-range spé4elated case. _
tial correlations and show some geometrical features of the For a given correlated network at criticality, we choose
pore structures generated by this technique. We also descrii&0 sitesA andB belonging to the infinite cluster and sepa-
the dynamical model to simulate the process of viscous distated by a distance. In oil recovery these represent the
placement in porous media. We show the results in Sec. lllinjection and production wellgsee, Fig. 8 We then extract
and Sec. IV is discussion and summary. the percolation backbone between these two points. To
model incompressible flow through this disordered system,
we assume that the lattice sites have negligible volume and
Il. MODEL the allocated bonds are homogeneous elementary units of a

We start by describing the geometry of the disordered?®rous materi_al with constant permeabil&tga_nd f]ow area.
system studied here. Our basic model of a porous medium \We also cons@er that the dynamics of fde_dlspI{:\cement is
a two-dimensional site percolation cluster at criticaligy7] ~ 9overned by viscous forces and timat 1 (the invading and
modified to introduce correlations among the occupancyliSplaced fluids have the same viscositynder these con-
units[17—21. The correlations are induced by means of thedltlorjs and due to the strlgtly convective nature of t_he pen-
Fourier filtering method, where a set of random variablesStration process, the velocity at each elementary unit can be
u(r) is introduced following a power-law correlation func- Medeled in terms of Darcy’s law,
tion

L(r)=0(¢d—u(r)), (2

(UNU(r+R)=R™7  (0<y=2), 1) vij =g (PP, 3
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55 - - of the system, the computed velocities at each bopd,can
be rescaled to give a fixed total flow raf independent of
5F N the distance betweeA and B, and the realization of the
porous medium. This resembles more closely oil recovery
45 | 1.85 ] processes where constant flow is maintained instead of con-
2 ’7 stant pressure drop.
= . To simulate the displacement of fluid through the perco-
< i ] lation backbone, we first note that, under the conditions of
) 1.64 unit viscosity ratio m=1) and for a fixed pressure drop
= 35} ] between the wells, the pressure field remains constant during
the propagation of the invading front through the percolation
3t ] network. Another consequence of this simplifying assump-
tion is that the front of invading fluid in any bondjj§ of the
25 . . lattice advances locally with a constant velocity equal;fo
17 2.2 2.7 3.2 This situation can be expressed as
log,, L
FIG. 2. Log-log plot of the backbone mabk,, versus the grid 7"'””‘ ox =0, )

sizeL for uncorrelated network&quaresand correlated networks

(circles. The long-range correlated percolation structures have beewhere Fij(x,t) denotes the interface between invading and
generated withy=0.5. The solid lines are the least-squares fits todisplaced fluidst is time, andx corresponds to the local
the data with slopes corresponding to the fractal dimensions of thR)ngitudinaI coordinate within each elementary u¢ibnd

respective backbonedyy,. of the porous material. Equatiafd) expresses the fact that
_ ) the physical system considered here is always and every-
whereP; and P; are the values of pressure at sitesndj,  \where convective for any value of the imposed flow r@te

respectively, and is the Iength of the bond. Conservation at This behavior is entire|y ana|og0us to the Con\/ecﬁnen_
each site of the backbone leads to the fOIlOWing set of ”neaﬂiffusive) regime of hydrodynamica| dispersi(ﬁm,Z:l, where
algebraic equations: the unsteady transport of a neutral tracer in a carrier fluid
flowing through a porous material is totally dominated by
convective effects. In the absence of diffusive effects, the
tracer samples the disordered medium by following the ve-
locity streamlines. In the general case of hydrodynamical
whereg;; is the volume flow rate through the bond and thedispersion, however, diffusion might play a significant role.
summation is taken over all bonds connected to a iadat  |f the pore space is sufficiently heterogeneous, local zones of
belongs to the cluster. As a macroscopic boundary conditiorsmall velocities can be found, even under conditions of high
we impose a constant flow ra@between the injecting point overall flow rates. As a consequence, the propagation of the
A and the extracting p0|rB In practice, we app|y a unit tracer front in these regions may be diffusionlike if the char-
pressure drop between weklsand B, and calculate the so- acteristic time for ConvectiomCEWU, is greater than the
lution of Eq.(4) in terms of the pressure field by means of atypical diffusion time,74=¢?/D,, whereD,, is the molecu-

standard subroutine for sparse matrices. Due to the lineariti@r diffusion coefficient of the tracer in the carrier fluid.
Applying the analogy between fluid displacement and the

ka
; Qij:ﬁ; (Pi—=Pj)=0, (4)

o OH P convective propagation of a tracer through a disordered po-
H, aE “*"LDI rous material, we can now put forward a random walk pic-
REEEEE Ei HA ture for the front penetration of the invading fluid. Here we
aniBl=s! . f|| O &n EFFL follow Refs.[12,13 and use the particle-launching algorithm
U . H (PLA), where the movement of a set (iface) particles is
322 - d H H statistically dictated by the local velocity field. In the PLA,
N :"':l i AP each particle starting from the injection poiAtcan travel
:-:: -H; B g -.E_I_‘_-. ] through the medium along a different path connected to the
1 ] b LT HE - recovery pointB, taking steps of lengtif and durationt;;
o : t'g HHHH gt ={/vj; (Fig. 4). The probabilityp;; that a tracer particle at
: - N 5 nodei selects an outgoing borigl (a bond wherey;;>0) is
r @ H proportional to the velocity of flow on that bond;
=il *vjj; IZyix, where the summation dhis over all outgoing
bonds.
FIG. 3. The traveling paths of 10000 traceits=(64, r =16, Il. RESULTS

andy=0.5). Heavy lines correspond to the bonds that receive more
than 6000 tracers, medium lines to those that receive between 1 and We investigate the effect of spatial long-range correlations
6000, and thin lines to those that receive none. on the distributions of traveling length and minimal traveling
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FIG. 4. (a) Log-log plot of traveling distance distributioR(l) for y=0.5 andr=4,8,16,32,64(b) Log-log plot of the most probable
valuel* for traveling length versus the distanceThe straight line is the least-squares fit to the ddta;1.13+0.02. (c) Data collapse
obtained by rescalingwith its characteristic valug* ~r'13 The least-squares fit to the data in the scaling region giye£.35+0.05.

time. Thetraveling time tof a pathC is defined as the sum of
the time stepg;; through each bond belonging to a con-
nected path betweeA andB,

t= >
(ihec

tij . (6)

values ofr and found that there is always a well-defined
region where the distributions &f(1) andP(t,,;,) follow the

scaling form[14]
—9z
f( ) ’

P(2)=A|

®

Z*

Thetraveling length lis the number of bonds present in path

C. Among the ensemble of all path€}, we select the path
C* that has thaminimal traveling time t,,

tmin(C* )=mint(C).
{c}

(@)

This quantity corresponds to tHereakthrough timeof the

wherez denoted or t,;,, Z* is the maximum of the prob-
ability distribution, the normalization constant is given by
A,~(z*) "1 and the scaling function has the fofh2,13

displacing fluid. For a given realization of the percolation

network, we compute all the traveling lengths and the mini-

fly)=exp—ay ’2). 9
The exponentsgp, andd, are related by23]
¢,=1/(d,~1). (10

mal traveling time corresponding to the trajectories of 10 000

tracer particles. For a fixed value of this operation is re-
peated for 10 000 network realizations of siz& L, where

Note that the scaling functiohdecreases sharply wheris
smaller thanz*. The lower cutoff is due to the constraint,

L=512, soL>r. We carried out simulations for different I=r.
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FIG. 5. (a) Log-log plot of the minimum traveling time distributid?(t,,;,) for y=0.5 andr =4,8,16,32,64(b) Log-log plot of the most
probable values for the minimal traveling tirhg,,, versus the distanae The straight line is the least-squares fit to the data, with the number
indicating the sloped,=1.75+0.03. (c) Data collapse obtained by rescalig, with its characteristic time*,,~r®"%. The least-squares fit

to the data in the scaling region givgs=1.89+0.04.

In Figs. 4a) and 5a) we show log-log plots of the prob-
ability densitiesP(l) and P(t,;,), respectively, for five dif-
ferent values of “well” separatior; =4, 8, 16, 32, and 64.
For each curve, we determine the characteristic sizas the
peak of the distribution and pla* on a double logarithmic
scale. As shown in Figs.(B) and 3b), the results of our
simulations indicate that botff andt},,,, respectively, have
power-law dependences on the distance* ~r%. The lin-
ear fit to the data yields the exponeutsfor each distribu-
tion, namely,

d;=1.13+0.02 (correlated (11
and
d,=1.75+0.03 (correlateq. (12

The same exponents reported in R¢12,13 for the case of
flow through uncorrelated percolation networkg=<2.0) at
constant flux are

d;~1.21 (uncorrelateg (13
and
d~1.33 (uncorrelategl (14

Once more, the differences in these exponents for the corre-
lated and uncorrelated cases can be explained in terms of the
morphology of the conducting backbone. Aglecreases, the
backbone becomes gradually more comgd&l. This dis-
tinctive feature of the correlated geometry tends to reduce
the value ofd, and augment the value df as the strength of
the long-range correlations increasgs., y decreases In
the limiting case of a homogeneous system, the correspond-
ing exponents ard,=1 andd;=2 [1,13,24.

Figures 4c) and 5c) show the data collapse obtained by
rescalingl andt,,;, by their characteristic sizek; andt},;,,.
Both scaled distributions are consistent with the scaling form
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of Eg. (8). From the least-squares fit to the data in the scalingions among the occupancy units of permeability. This model

regions, we obtain the exponents is certainly a more realistic description for the geometry of
porous rocks and should lead to a better mathematical repre-
9/=2.35-0.05 (correlated (19  sentation of their transport properties.

Our results on the distributions of traveling length and

minimal traveling time through correlated percolation net-

9,=1.89+0.04 (correlateq. (16)  works show that spatial fluctuations in rock permeability can
have significant consequences on the dynamics of fluid dis-
For uncorrelated pore networks subjected to the condition oflacement. More precisely, we observed that the presence of

and

constant flux, the exponents dre2,13 long-range correlations can substantially modify the scaling
exponents of these distributions and, therefore, their univer-
9/~2.0 (uncorrelated (17 sality class. As in previous studies on the subjé& 20|, we

explain this change of behavior in terms of the morphologi-
cal differences among uncorrelated and correlated pore
9:~2.0 (uncorrelateyl (18) spaces generated at criticality. Compared to the uncorrelated
structures, the backbone clusters of the correlated cluster
The differences between these distribution exponents haveave a more compact geometry. The level of compactness
their origins in the different levels of compactness betweerflepends, of course, on the degree of correlations introduced
correlated and uncorrelated clusters. These results are coiuring the generation process. Moreover, our results are con-
patible with those of previous studigb9,20], which indicate  sistent with the fact that the dynamical scaling exponelnts
that spatial correlations can change other critical exponentsindd; obtained for correlated geometries assume values in-
termediate between the uncorrelated and the homogeneous
IV. DISCUSSION limiting cases.
As a future work, we will perform computational simula-
The need for a better description of the geometrical feations for different values ofy in order to determine the de-
tures of the pore space has been the main conclusion of SeMendence form ofi, and g, on the degree of long-range
eral recent experimental and theoretical studies on transpogbrrelations. We will also investigate the effect of spatial
phenomena in disordered porous matefidlsit is therefore  |ong-range correlations on the dynamics of viscous displace-
necessary to examinlecal aspects of the pore space mor- ment through percolation networks in the limiting case of a
phology and relate them to the relevant mechanisms of mogery |arge viscosity ration— co. Similar to a previous study
mentum, heat and mass transfer in order to understand thg uncorrelated structur§s6], the basic idea is to provide a

important interplay between porous structure and phenomyrejiminary test for universality in the critical exponents
enology. From a conceptual point of view, this task has beeRnq g, with respect to the parameten

accomplished in many works, where computational simula-

tions based on a detailed description of the pore space have

been fqlrly successful in predlctlng_and validating known_ ACKNOWLEDGMENTS
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