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Traveling length and minimal traveling time for flow through percolation networks
with long-range spatial correlations
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We study the distributions of traveling lengthl and minimal traveling timetmin through two-dimensional
percolation porous media characterized by long-range spatial correlations. We model the dynamics of fluid
displacement by the convective movement of tracer particles driven by a pressure difference between two fixed
sites~‘‘wells’’ ! separated by Euclidean distancer. For strongly correlated pore networks at criticality, we find
that the probability distribution functionsP( l ) andP(tmin) follow the same scaling ansatz originally proposed
for the uncorrelated case, but with quite different scaling exponents. We relate these changes in dynamical
behavior to the main morphological difference between correlated and uncorrelated clusters, namely, the
compactness of their backbones. Our simulations reveal that the dynamical scaling exponentsdl and dt for
correlated geometries take values intermediate between the uncorrelated and homogeneous limiting cases,
wherel * ;r dl and tmin* ;r dt, and l * and tmin* are the most probable values ofl and tmin , respectively.
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I. INTRODUCTION

Fluid transport in porous media is of central importance
problems in petroleum exploration and production@1–4#.
The geometry of an oil field can be very complex, displayi
heterogeneities over a wide range of length scales from
timeters to kilometers@5#. The most common method of o
recovery is by displacement. Typically, water or a miscib
gas ~carbon dioxide or methane! is injected in a well~or
wells! to displace oil to other wells. Ultimately the displa
ing fluid will break through into a production well where
must be separated from the oil. At this point, the rate of
production decreases. For economic purposes, it is impo
to predict when the injected fluid will break through.

When modeling the process of oil recovery, an open qu
tion is the effect of the connectedness of the porous med
on the dynamical process of fluid displacement. If the p
space is so poorly connected as to be considered macros
cally heterogeneous, one expects the overall behavior of
flowing system to display significant anomalies. For e
ample, it is common to investigate the physics of disorde
media at a marginal state of connectivity in terms of t
geometry of the spanning cluster at the percolation thresh
@6,7#. First, it is clearly an advantage to use the percolat
model because a comprehensive set of exactly and num
cally calculated critical exponents is available to describe
only its geometrical features, but also its dynamical~trans-
port! properties. Second, the application of this geometr
paradigm can be consistently justified through ‘‘the critic
path method’’@8#, a powerful approximation that has bee
successfully used@9# to estimate transport properties~e.g.,
permeability and electrical conductivity! of disordered po-
rous materials. Accordingly, the transport in disordered m
dia with abroad distribution of conducting elements shou
be dominated by those regions where the conductances
larger than some critical value. This value is the largest c
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ductance such that the set of conductances above this th
old forms a network that preserves the global connectivity
the system. In percolation terminology, this is equivalent
the conducting spanning cluster.

The extent to which the self-similar characteristic of t
critical percolation geometry can modify the displaceme
process is unclear. Several studies have been devoted t
investigation of the displacement process through perc
tion porous media at criticality@10,11#. More recently
@12,13#, the dynamics of viscous displacement through p
colation clusters has been investigated in the limiting con
tion of unit viscosity ratiom[m1 /m2, wherem1 andm2 are
the viscosities of the injected and displaced fluids, resp
tively. In this situation, the displacement front can be mo
eled by tracer particles following the streamlines of the flo
and the corresponding distributions of shortest path
minimal traveling time closely obey a scaling ansatz@14,15#.
Subsequently@16#, the dynamics of viscous penetratio
through two-dimensional critical percolation networks h
been investigated in the limiting case of a very large visc
ity ratio, m→`. The results from this study indicate that th
distribution of breakthrough time follows the same scali
behavior observed for the casem51 @12,13#. As a conse-
quence, it has been suggested@16# that the process of viscou
displacement through critical percolation networks mig
constitute a single universality class, independent ofm.

The spatial distributions of porosity and permeability
real rocks are often close to random. However, one can
assume that the nature of their morphological disorde
necessarily uncorrelated, i.e, the probability for a site to
occupied is independent of the occupancy of other sites
fact, the permeability of some rock formations can be co
sistently high over extended regions of space and low o
others, characterizing in this way a correlated structure@3#.
In the case of sandstone, for example, the permeability is
the result of an uncorrelated random process. Sand dep
©2002 The American Physical Society04-1
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FIG. 1. ~a! A typical percolation latticeL5256 for the uncorrelated case. Heavy lines correspond to the backbone, gray lines to da
ends, and light gray lines to isolated ‘‘islands’’~nonspanning clusters!. ~b! The same as in~a!, but for the correlated case (g50.5).
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tion by moving water or wind~and other mechanisms o
geological scale! naturally imposes its own kind of correla
tions. A suitable mathematical approach to represent the
ometry of the pore spaces and the corresponding trans
properties is correlated percolation@17–21#. This approach
has been successfully used to model permeability fluc
tions and also to explain the scale dependence of hydro
namic dispersion coefficients in real porous materials@22#.

Our aim here is to extend the investigation on the d
placement dynamics between two fluids through tw
dimensional percolation clusters at criticality@12,13# to the
case where the pore space displays long-range spatial c
lations. We focus on the case of viscous penetration with
immiscible fluids of unit viscosity ratio (m51) to study the
effect of long-range correlations on the distributions of tra
eling length and minimal traveling time.

The organization of the paper is as follows. In Sec. II,
present the mathematical model to simulate long-range
tial correlations and show some geometrical features of
pore structures generated by this technique. We also des
the dynamical model to simulate the process of viscous
placement in porous media. We show the results in Sec.
and Sec. IV is discussion and summary.

II. MODEL

We start by describing the geometry of the disorde
system studied here. Our basic model of a porous mediu
a two-dimensional site percolation cluster at criticality@6,7#
modified to introduce correlations among the occupa
units @17–21#. The correlations are induced by means of t
Fourier filtering method, where a set of random variab
u(r ) is introduced following a power-law correlation func
tion

^u~r !u~r1R!&}R2g ~0,g<2!, ~1!
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whereg52 is the uncorrelated case andg'0 corresponds
to the maximum correlation. The correlated variablesu(r )
are used to define the occupancyz(r ) of the sites

z~r !5Q„f2u~r !…, ~2!

whereQ is the Heaviside function and the parameterf is
chosen to produce a lattice at the percolation threshold
Figs. 1~a,b! we show typical backbones extracted from u
correlated and correlated networks. Long-range correlati
in site occupancy give rise to variations in the structu
characteristics of the conducting backbone@19#. To illustrate
this effect quantitatively, Fig. 2 compares the fractal dime
sion of the conducting backbone calculated for uncorrela
and for correlated networks withg50.5. Indeed, the fracta
dimension of the backbone is significantly larger for the c
related case.

For a given correlated network at criticality, we choo
two sitesA andB belonging to the infinite cluster and sep
rated by a distancer. In oil recovery these represent th
injection and production wells~see, Fig. 3!. We then extract
the percolation backbone between these two points.
model incompressible flow through this disordered syste
we assume that the lattice sites have negligible volume
the allocated bonds are homogeneous elementary units
porous material with constant permeabilityk and flow areaa.
We also consider that the dynamics of fluid displacemen
governed by viscous forces and thatm51 ~the invading and
displaced fluids have the same viscosity!. Under these con-
ditions and due to the strictly convective nature of the p
etration process, the velocity at each elementary unit can
modeled in terms of Darcy’s law,

v i j 5
k

m,
~Pi2Pj !, ~3!
4-2
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TRAVELING LENGTH AND MINIMAL TRAVELING TIM E . . . PHYSICAL REVIEW E 66, 046304 ~2002!
wherePi and Pj are the values of pressure at sitesi and j,
respectively, and, is the length of the bond. Conservation
each site of the backbone leads to the following set of lin
algebraic equations:

(
j

qi j 5
ka

m, (
j

~Pi2Pj !50, ~4!

whereqi j is the volume flow rate through the bond and t
summation is taken over all bonds connected to a nodei that
belongs to the cluster. As a macroscopic boundary condit
we impose a constant flow rateQ between the injecting poin
A and the extracting pointB. In practice, we apply a uni
pressure drop between wellsA and B, and calculate the so
lution of Eq. ~4! in terms of the pressure field by means o
standard subroutine for sparse matrices. Due to the linea

FIG. 2. Log-log plot of the backbone massMbb versus the grid
sizeL for uncorrelated networks~squares! and correlated networks
~circles!. The long-range correlated percolation structures have b
generated withg50.5. The solid lines are the least-squares fits
the data with slopes corresponding to the fractal dimensions of
respective backbones,dbb .

FIG. 3. The traveling paths of 10 000 tracers (L564, r 516,
andg50.5). Heavy lines correspond to the bonds that receive m
than 6000 tracers, medium lines to those that receive between 1
6000, and thin lines to those that receive none.
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of the system, the computed velocities at each bond,v i j , can
be rescaled to give a fixed total flow rateQ, independent of
the distance betweenA and B, and the realization of the
porous medium. This resembles more closely oil recov
processes where constant flow is maintained instead of
stant pressure drop.

To simulate the displacement of fluid through the perc
lation backbone, we first note that, under the conditions
unit viscosity ratio (m51) and for a fixed pressure dro
between the wells, the pressure field remains constant du
the propagation of the invading front through the percolat
network. Another consequence of this simplifying assum
tion is that the front of invading fluid in any bond (i j ) of the
lattice advances locally with a constant velocity equal tov i j .
This situation can be expressed as

]Fi j

]t
1v i j

]Fi j

]x
50, ~5!

whereFi j (x,t) denotes the interface between invading a
displaced fluids,t is time, andx corresponds to the loca
longitudinal coordinate within each elementary unit~bond!
of the porous material. Equation~5! expresses the fact tha
the physical system considered here is always and ev
where convective for any value of the imposed flow rateQ.
This behavior is entirely analogous to the convective~non-
diffusive! regime of hydrodynamical dispersion@1,2#, where
the unsteady transport of a neutral tracer in a carrier fl
flowing through a porous material is totally dominated
convective effects. In the absence of diffusive effects,
tracer samples the disordered medium by following the
locity streamlines. In the general case of hydrodynami
dispersion, however, diffusion might play a significant ro
If the pore space is sufficiently heterogeneous, local zone
small velocities can be found, even under conditions of h
overall flow rates. As a consequence, the propagation of
tracer front in these regions may be diffusionlike if the ch
acteristic time for convection,tc[,/v, is greater than the
typical diffusion time,td[,2/Dm , whereDm is the molecu-
lar diffusion coefficient of the tracer in the carrier fluid.

Applying the analogy between fluid displacement and
convective propagation of a tracer through a disordered
rous material, we can now put forward a random walk p
ture for the front penetration of the invading fluid. Here w
follow Refs.@12,13# and use the particle-launching algorith
~PLA!, where the movement of a set of~tracer! particles is
statistically dictated by the local velocity field. In the PLA
each particle starting from the injection pointA can travel
through the medium along a different path connected to
recovery pointB, taking steps of length, and durationt i j
5,/v i j ~Fig. 4!. The probabilitypi j that a tracer particle a
nodei selects an outgoing bondi j ~a bond wherev i j .0) is
proportional to the velocity of flow on that bond,pi j
}v i j /(kv ik , where the summation onk is over all outgoing
bonds.

III. RESULTS

We investigate the effect of spatial long-range correlatio
on the distributions of traveling length and minimal travelin

en

e
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FIG. 4. ~a! Log-log plot of traveling distance distributionP( l ) for g50.5 andr 54,8,16,32,64.~b! Log-log plot of the most probable
value l * for traveling length versus the distancer. The straight line is the least-squares fit to the data,dl51.1360.02. ~c! Data collapse
obtained by rescalingl with its characteristic valuel * ;r 1.13. The least-squares fit to the data in the scaling region givesgl52.3560.05.
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time. Thetraveling time tof a pathC is defined as the sum o
the time stepst i j through each bondi j belonging to a con-
nected path betweenA andB,

t[ (
( i j )PC

ti j . ~6!

The traveling length lis the number of bonds present in pa
C. Among the ensemble of all paths$C%, we select the path
C* that has theminimal traveling time tmin ,

tmin~C* ![min
$C%

t~C!. ~7!

This quantity corresponds to thebreakthrough timeof the
displacing fluid. For a given realization of the percolati
network, we compute all the traveling lengths and the m
mal traveling time corresponding to the trajectories of 10 0
tracer particles. For a fixed value ofr, this operation is re-
peated for 10 000 network realizations of sizeL3L, where
L5512, soL@r . We carried out simulations for differen
04630
i-
0

values of r and found that there is always a well-define
region where the distributions ofP( l ) andP(tmin) follow the
scaling form@14#

P~z!5AzS z

z*
D 2gz

f S z

z*
D , ~8!

wherez denotesl or tmin , z* is the maximum of the prob-
ability distribution, the normalization constant is given b
Az;(z* )21 and the scaling function has the form@12,13#

f ~y!5exp~2azy
2fz!. ~9!

The exponentsfz anddz are related by@23#

fz51/~dz21!. ~10!

Note that the scaling functionf decreases sharply whenz is
smaller thanz* . The lower cutoff is due to the constrain
l>r .
4-4
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FIG. 5. ~a! Log-log plot of the minimum traveling time distributionP(tmin) for g50.5 andr 54,8,16,32,64.~b! Log-log plot of the most
probable values for the minimal traveling timetmin versus the distancer. The straight line is the least-squares fit to the data, with the num
indicating the slope,dt51.7560.03. ~c! Data collapse obtained by rescalingtmin with its characteristic timetmin* ;r 1.75. The least-squares fi
to the data in the scaling region givesgt51.8960.04.
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In Figs. 4~a! and 5~a! we show log-log plots of the prob
ability densitiesP( l ) andP(tmin), respectively, for five dif-
ferent values of ‘‘well’’ separation,r 54, 8, 16, 32, and 64.
For each curve, we determine the characteristic sizez* as the
peak of the distribution and plotz* on a double logarithmic
scale. As shown in Figs. 4~b! and 5~b!, the results of our
simulations indicate that bothl * andtmin* , respectively, have
power-law dependences on the distancer, z* ;r dz. The lin-
ear fit to the data yields the exponentsdz for each distribu-
tion, namely,

dl51.1360.02 ~correlated! ~11!

and

dt51.7560.03 ~correlated!. ~12!

The same exponents reported in Refs.@12,13# for the case of
flow through uncorrelated percolation networks (g52.0) at
constant flux are
04630
dl'1.21 ~uncorrelated! ~13!

and

dt'1.33 ~uncorrelated!. ~14!

Once more, the differences in these exponents for the co
lated and uncorrelated cases can be explained in terms o
morphology of the conducting backbone. Asg decreases, the
backbone becomes gradually more compact@19#. This dis-
tinctive feature of the correlated geometry tends to red
the value ofdl and augment the value ofdt as the strength of
the long-range correlations increases~i.e., g decreases!. In
the limiting case of a homogeneous system, the correspo
ing exponents aredl51 anddt52 @1,13,24#.

Figures 4~c! and 5~c! show the data collapse obtained b
rescalingl andtmin by their characteristic sizes,l * andtmin* .
Both scaled distributions are consistent with the scaling fo
4-5
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of Eq. ~8!. From the least-squares fit to the data in the sca
regions, we obtain the exponents

gl52.3560.05 ~correlated! ~15!

and

gt51.8960.04 ~correlated!. ~16!

For uncorrelated pore networks subjected to the conditio
constant flux, the exponents are@12,13#

gl'2.0 ~uncorrelated! ~17!

and

gt'2.0 ~uncorrelated!. ~18!

The differences between these distribution exponents h
their origins in the different levels of compactness betwe
correlated and uncorrelated clusters. These results are
patible with those of previous studies@19,20#, which indicate
that spatial correlations can change other critical expone

IV. DISCUSSION

The need for a better description of the geometrical f
tures of the pore space has been the main conclusion of
eral recent experimental and theoretical studies on trans
phenomena in disordered porous materials@3#. It is therefore
necessary to examinelocal aspects of the pore space mo
phology and relate them to the relevant mechanisms of
mentum, heat and mass transfer in order to understand
important interplay between porous structure and phen
enology. From a conceptual point of view, this task has b
accomplished in many works, where computational simu
tions based on a detailed description of the pore space
been fairly successful in predicting and validating know
correlations among transport properties of real porous m
@25–29#. In the present work, we have investigated the d
namics of immiscible fluid displacement using the fram
work of a percolation model for porous media that has b
specially modified to introduce spatial long-range corre
c-

-
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tions among the occupancy units of permeability. This mo
is certainly a more realistic description for the geometry
porous rocks and should lead to a better mathematical re
sentation of their transport properties.

Our results on the distributions of traveling length a
minimal traveling time through correlated percolation n
works show that spatial fluctuations in rock permeability c
have significant consequences on the dynamics of fluid
placement. More precisely, we observed that the presenc
long-range correlations can substantially modify the scal
exponents of these distributions and, therefore, their univ
sality class. As in previous studies on the subject@19,20#, we
explain this change of behavior in terms of the morpholo
cal differences among uncorrelated and correlated p
spaces generated at criticality. Compared to the uncorrel
structures, the backbone clusters of the correlated clu
have a more compact geometry. The level of compactn
depends, of course, on the degree of correlations introdu
during the generation process. Moreover, our results are
sistent with the fact that the dynamical scaling exponentsdl
anddt obtained for correlated geometries assume values
termediate between the uncorrelated and the homogen
limiting cases.

As a future work, we will perform computational simula
tions for different values ofg in order to determine the de
pendence form ofdz and gz on the degree of long-rang
correlations. We will also investigate the effect of spat
long-range correlations on the dynamics of viscous displa
ment through percolation networks in the limiting case o
very large viscosity ratio,m→`. Similar to a previous study
on uncorrelated structures@16#, the basic idea is to provide
preliminary test for universality in the critical exponentsdz
andgz with respect to the parameterm.
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