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Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics
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Experiments on isotropic compression of a granular assembly of spheres show that the shear and bulk
moduli vary with the confining pressure faster than the 1/3 power law predicted by Hertz-Mindlin effective
medium theories of contact elasticity. Moreover, the ratio between the moduli is found to be larger than the
prediction of the elastic theory by a constant value. The understanding of these discrepancies has been a
long-standing question in the field of granular matter. Here we perform a test of the applicability of elasticity
theory to granular materials. We perform sound propagation experiments, numerical simulations, and theoret-
ical studies to understand the elastic response of a deforming granular assembly of soft spheres under isotropic
loading. Our results for the behavior of the elastic moduli of the system agree very well with experiments. We
show that the elasticity partially describes the experimental and numerical results for a system under compres-
sional loads. However, it drastically fails for systems under shear perturbations, particularly for packings
without tangential forces and friction. Our work indicates that a correct treatment should include not only the
purely elastic response but also collective relaxation mechanisms related to structural disorder and nonaffine
motion of grains.

DOI: 10.1103/PhysRevE.70.061302 PACS nuner81.05.Rm

I. INTRODUCTION AND OBJECTIVES Ref.[14]). Some studies have suggested thatg#’? scaling

fined by an external stress can be extremely nonlinear d§e moduli[2].

compared to continuum elastic solifls-4]. Many industrial Here we extend the results of RgE3] and investigate the
applications, such as the optimization of well location in anapplicability of elasticity theory to granular matter by means
oil reservoir, depend crucially on the correct interpretation ofof experiments, computer simulations, and analytical calcu-
nonlinear acoustic effects in granular materials, as exemplilations. We first develop a series of acoustic experiments to
fied by the large variation of the sound speeds or the elasticharacterize the nonlinear elastic behavior of noncohesive
constants of the granular formation as a function of the exdry granular materials under a wide range of external pres-
ternal stres$5,6]. sures. From this experimental study we conclude that a mi-

Important insight into this problem comes first from the croscopic study is needed in order to elucidate the deficien-
Hertz-Mindlin contact theory to model the intergrain forcescies of existing granular theories. Then we perform a
[7,8]. In this case, nonlinearity arises from the increase withmolecular dynamicgMD) simulation to give microscopic
the external stress of the contact area between two sphericalsight into the relaxation mechanism of granular materials.
grains. Conventional theories describing this problem in thd=inally, we offer a simple theory of relaxation going beyond
framework of elasticity of continuum medi®] consider a the effective medium approximation of elasticity.
uniform strain at all scales, and the displacement field of the We calculate the elastic moduk, and u, of a disordered
grains is affine with the macroscopic deformatitime affine  array of elastofrictional Hertz-Mindlin spherical grains. Nu-
approximation. Here, one computes the stresses in terms ofmerical simulations resolve the question as to whether the
the strains by considering the disordered medium as an efiroblem lies in the treatment of intergrain contact or with the
fective medium that exerts a mean-field for@s given by EMT. We find agreement between our simulations and the
contact Hertzian theojyon a single representative grain. experiments, thus confirming the validity of the Hertz-
This approximation is usually referred to as the effectiveMindlin contact theory to glass bead aggregates composed of
medium theoryEMT) [9-172. frictional particles.

As shown in a short lettef13] and the studies of other Regarding the anomalous pressure dependence of the
groups[2], the EMT does not successfully explain the me-moduli, we find that there are several nonlinearities which
chanical properties of cohesionless granular assemblies. Thpeeclude the proper definition of a scaling behavior as a func-
main prediction of the theory is the scaling of the bulk modu-tion of pressure. We find a regime at low pressure where the
lus K and shear modulug. with the pressurgp asK~u  coordination number and the volume fraction do not change
~ pY3. However, there is a large volume of experiments formuch from their minimal values. In this regime th&® scal-
irregular sand grains as well as spherical glass beads whidhg is approximately valid. However, for pressures larger
show anomalous scaling characterized by exponents varyinfpan 10 MPa the increase of the coordination nhumber and
between 1/3 and 1/&or a comprehensive review see God- volume fraction induces other nonlinearities and therefore no
dard[2] and for a review in the geotechnical literature seesimple scaling behavior can be defined.
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In reality around 10 MPa there is crossover frop'&to  mean coordination numbet,=2D in D dimensions, and a
a p®° scaling at larger pressures. Thus we conclude that theolume fraction of random close packing.~0.64. This
scattering in the experimental values of the pressure expgoint describes a rigidity threshold state or a critical state of
nent might be explained by the fact that the exponent ighe packing as defined by Alexandéi6] and it is where the
actually changing continuously from 1/3 to 5/9. This is es-system becomes “isostatif17-19. The elastic moduli van-
pecially true in the regime where the experiments are usuallish as a power law of the pressure or volume fraction. For
done, near the crossover region at 10 MPa. Similar concluany finite pressure rigidity is achieved, sin¢e Z.. Near the
sions have been reached by Ludiié] who also found that rigidity threshold the reference packing structure has a power
EMT needs to take into account the coordination number anthw dependence on the pressure, modifying the scaling of
its dependence on pressure. u(p) predicted by the Hertz theory.

Our most important results relate to the effect of friction ~ When friction and tangential elasticity is restored at the
and stress relaxation on the behavior of the elastic constantisitergrain contacts, the agreement between theory and simu-
First, we find that the elastic formulation gives a reasonabléations(and in this case experimentsnproves with respect
description for the response of the system to compression&b the frictionless case. This is because the existence of tan-
loads, i.e., the bulk modulus is reasonably well defined withgential restoring forces reduces the extent to which the grains
the simple EMT. However, our simulations establish that therelax from the assumed affine configuration. Thus the EMT
EMT is inadequate in describing the response of the materigirovides a better agreement with simulations and with ex-
under shear perturbations. periments for frictional grains than for frictionless grains, but

The numerical simulations indicate that EMT fails be- serious disagreements still persist as we shall demonstrate.
cause it does not properly allow the grains to relax from the We conclude that in order to develop a better understand-
affine deformation imposed by the external boundary. Théng of the problem, one must abandon the purely elastic
affine assumption is that, under an infinitesimal symmetridramework and consider granular matter as a full viscoelastic
macroscopic deformation, each grain translates according teody. Collective relaxation effects can account for the dis-
the direction of the macroscopic strain, and it does not rotatesrepancy in the shear modulus in comparison with the elastic
Moreover, no further relaxation mechanism is allowed. Suclprediction: the corrections increase dramatically in the case
an homogeneous strain field is consistent with the local forcef loose materials and for frictionless packings. A theory of
balance of grains only in an ordered system. For disorderegingle-particle relaxation is offered as a first step in this di-
packings an inhomogeneous strain develops at the locaéction. We also discuss our results in the framework of re-
level. After the application of an affine strain the particlescent theories of marginal rigidity, jamming, melting, and
experience an unbalanced force since they are not, in geffragile matter.
eral, in a symmetric environment. Consequently, the particles Applications Part of the motivation for this research de-
will move to a position different to that predicted by the rives from the fact that acoustics and nonlinear elastic log-
affine approximation, so that the net force on each particle iging methods are at the forefront of the evolving technology
zero. Similarly for torques and rotations. to help plan and optimize well location in oil exploration

Here we show that the assumption of affinity is approxi-[20]. In order to position a well correctly, the knowledge of
mately valid for the bulk modulus and seriously flawed forthe stress distribution around the bore hole is essential. Me-
the shear modulus. For this reason, the EMT prediction difchanical properties of the granular formation obtained from
fers significantly from the experimental value. Thus the prin-sonic logging can help predict formation strength, while
cipal source of deviation from EMT is the breakdown of the stress magnitude derived from sonic measurements helps in
uniform strain assumption. predicting sanding problems in unconsolidated formations.

To quantify the breakdown of EMT for the shear modulusAcoustic measurements in granular materials provide the
we focus our studies to two cases: frictionless grains internatural way to understand the distribution of stress around
acting via only normal forceg&his system is said to be path the bore hole.
independent and it is thought to describe compressible foams Quite apart from the relevance to bore-hole logging,
and emulsionsand systems with elastic tangential forceswithin the field of seismic tomography there is a growing
and Coulomb frictional force@hese systems are path depen-interest in developing techniques to generate images of dis-
dent and describe dry granular matenals sipation, along with the more traditional images of imped-

The largest disagreement between theory and simulatiorence contrast. This extended seismic tomography would have
is found for frictionless systems; the difference is more proimpact, not only on the understanding of hydrocarbon reser-
nounced at low confining stress where we show that the sysroirs but also, e.g., on technigues to monitor the migration of
tem is in a state of marginal rigidity at a minimal mean ground water pollutants. This work represents an attempt to
coordination number equal to 6 in three dimensiams4 in  understand some of the mechanisms of attenuation as well as
two dimensions We find that after the application of an the stress dependence of sound velocities in granular materi-
external shear strain there is a nearly complete relaxation afls.
the system to the applied shear; a result that cannot be cap- The outline of the paper is as follows. Section Il reviews
tured under the framework of elasticity. We show that a newthe background of the problem of effective medium theories
scaling behavior with pressure might describe the data foand numerical approaches: MD simulations and intergrain
frictionless particles betteyu(p) ~ p?® asp— 0. forces for granular materials, compressed emulsions, and

We interpret this result in the framework of critical phe- foams. Section Il describes the experiments on sound propa-
nomena: ap— 0 the system approaches a critical point at agation. Section IV describes the numerical results and Sec. V
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the theoretical results. We conclude in Sec. VI with a finalis 2s. This is called the Mindlin “no-slip” solutiorisee Ap-
outlook. pendix A for a more general solutipn
The incremental form Eq4) is needed since the numeri-
cal value of the tangential force depends upon the trajectory
Il. BACKGROUND taken in the spacéf,s); see Ref[12] for details. The tan-

The problem of elastic properties of granular materialsgential force is obtained by integrating over the path taken
has been treated by many researchers since the pioneerihﬁ the Spheres in contact SUbjeCt to the initial conditions:
work of Mindlin in the 195052,9,21-30. However, a gen- Fn=0, F;=0 at£=0,s=0, yielding
eral solution to this problem is still lacking.

In a typical experiment, a set of cohesionless glass beads Ft:f k(R&)Y2ds. (5)
is confined at a hydrostatic strepsand the compressional path
sound speed,, and the shear sound spaggare measured as
functions of stresgsee, for instance, Domenid@1], Yin
[22], and Refs[2,23,26). The P-wave andS-wave speeds
are related to the elastic constants of the material in the lon
wavelength limit:

Thus a granular system with tangential elastic forces is
said to be path dependent. By path dependency we mean that
the work done in deforming the system depends upon
Yhether one first compresses the system, then shears it, or
first shears it then compresses. The results depend upon the

K+ 4/3u path taken and not just the instantaneous final state. On the
Up=\ T, (1) other hand, a system of spheres interacting only via normal
P forces, Eq.(3), is said to be path independent, and the work
does not depend on the way the strain is applied.
_ L ® As the shear displacement increases, the elastic tangential
Us= ; @ A - ,
p orce F, reaches its limiting value given by Amontons’ law

) ) for no adhesionk; =< u¢F,. Amontons’ law(a special case of
wherep is the mass density of the system. Coulomb’s law adds a second source of path dependency as
well as hysteresis to the problem.

A. Contact mechanics

In his seminal paper “On the Contact of Elastic Solids,” B- Effective medium theories (EMT) of granular elasticity

H. Hertz [7,8] used linear elasticity of continuum media to  The basic idea of elastic theories relevant to our study is
calculate the normal force of two perfectly elastic sphereshat the macroscopic work done in deforming the system is
pressed into contact ConSIderlng no attraction or St|Ck|neS%et equa' to the sum of the work done on each grain_grain
Hertz showed that two spherical grains in contact with radiicontact and that the latter is replaced by a suitable average

R; andR; interact with a normal repulsive force [10-12. These theories are usually referred to as the effec-
2 tive medium theoryEMT) and are based on Hertz-Mindlin
Fnzékan’zgm, (3)  contact mechanics. In the case of an isotropic deformable

solid (for simplicity we describe the isotropic cgsehe
where R=2R,R,/(R;+R,), the normal overlap is¢=(1/ strain energy density per unit volume as a function of the
2[(Ry+Ry) = |~ %,|1>0, and¥%,, X, are the positions of the Strainej; Is
grain centers. The normal force acts only in compression, 1 2 1
Fo=0 when¢<0. The effective stiffnesk,=4uy/ (1-v,) is U(ej) =Uo— pey + ,LLe( & — :—35.,- 6||> + EKe(ell)Z +0(e}).
defined in terms of the shear modulus of the graigsand
the Poisson ratieg of the material from which the grains are (6)
[)neal\fde;typmally Mg=29 GPa and,;=0.2, for spherical glass This equation is equivalent to the expression

The situation in the presence of a tangential foFges _ 1

more complicated. In the case of spheres under oblique load- 0 = Ke€i 8j + 2pe| € ~ §5u' €l (7)
ing, the tangential contact force was calculated by Mindlin _ _ _
[31]. A general loading history can be described by the in-which determ!nes thg stress tensgy in terms of the strain
cremental change in the tangential forsE, and in the nor-  tensor for an isotropic bod}8]. Here
mal forceAF,,. For the special case where the partial incre- _
ments do not involve microslip at the contact surfdice., 6j = VA0 wlox;+ouox), 8)
|AF | < u¢AF,, whereu; is the kinematic friction coefficient and the deviations;=x,—R; of the positions of theN par-
between the spheres, typicajiyy=0.3) Mindlin [31] showed ticles in the system{x,, ... Xy}, are measured from a suit-
that the tangential force is able rigid reference state

AF, = k(R&)Y?As, (4) {R}={Ry, ... Ry}, (9)

wherek;=8u,/(2-vy), and the variabls is defined such that around which one can expand consistently. This reference
the relative shear displacement between the two grain centessate is straightforward for simple periodic systems. How-
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ever, it is assumed that this expansion is also possible faation. In principle the energy functione) now depends on
amorphous solids with reference states which are randonthe path. However, it has been shown that the second order
like in a packing of graingsee Alexande[16] for extensive elastic constants are still path independent under the frame-
discussions The subscript inK, and u. denotes that the work of EMT, while path dependency appears only in the
values of the moduli are calculated considering granular mathird order elastic constanf&?2].
terials as purely elastic solids. There are two assumptions The bulk modulus is not affected by the introduction of
inherent to the elastic EMT: tangential forces, and E@L2) is still valid in this case. How-

< All the spheres are statistically the same, and it is asever, the shear modulus is modified according to
sumed that there is an isotropic distribution of contacts 13
around a given sphere. 11e(p) = Kk + (3/2)ki @) .

Kn

* An affine approximation is used, i.e., the spheres at po- 20
The above results have been obtained by a number of

sition x; are moved a distancéy; in a time intervalét ac-
cording to the macroscopic strain ratg by authors using different methods and are valid in three dimen-
U, = €;X; Ot (10)  sions[10-17. It should be noted that the above results are

. . ._Obtained for a system of infinitely rough spheres, i.e., when
The grains are always at equilibrium due to the assumption .. Thys there is no sliding, and Coulomb friction is not

of an isotropic distribution of contacts, and further relaxationconsidered, although there is a tangential elastic restoring

is not required. This sort of mean field theory is analogous tq,,ce as given by Eq). See Appendix A for further dis-
a simple average of nonlinear spring constants. cussion.
T

It is important to notice that a definition of uniform strain he p'® dependence in Eqg12)~(14) is a direct conse-

field is possible only under the mean field approximation.q,ence of the scaling of the normal Hertz force on the de-
This assumption is also trivially correct for ordered packings ¢ormation. Since

However, for disordered systems, the affine approximation is
inconsistent with the local equilibrium of graif82). We p~F,~ &%~ &2, (15)
will come back to this crucial point later on.

(¢Z)2’3< (14)

With the above assumptions, the elastic energy(Egis we expect
set equal to a suitable average over the contacts, viz. ap P
1 /-’“eNKeNENEl ~pT (16)
U==> | F-du=="- JF-du , (1)
V contact Vo We note that a system of linear sprindg,~ & would

give rise to elastic constants which are independent of pres-

with F-du=F.dé+F,;-ds, Z is the average coordination num- sure, as in the linear elasticity theory.

ber defined as the average number of contacts per paicle,
is the volume fraction of the sample, a¥gis the volume of _ ) )
a single grain. The EMT predictions for the bulk and shear C. Discrepancies between theory and experiments
modulus for an isotropic system compressed at pressure |t was found experimentally that the shear and bulk
are as follows. moduli of an assembly of spherical grains vary with the con-
We distinguish between two different models: fining stressp faster than thep'® power law predicted by
(i) Path-independent model=0, frictionless grains  Eqs.(12)—«14) [2]. Another way of seeing the breakdown of

We consider that there is perfect slippage at the intergraifhe elastic theory is to focus on the rakid u. According to
contact. This corresponds #=0, only normal forces be- Egs.(12) and(14) for frictional grains
tween the particles. This case corresponds to path-

independent forces, and allows the use of an energy density Ke _ 5(2-w) 17
function Eg.(6) which depends only on the instantaneous pe 3(5—4v)’

position of the particles. This case could be considered con- .

servative since the total work on a closed path is zero. And'ependen.t of stress, a value W.h'Ch depends'only on .the

system of frictionless spherical particles could be thought of ©iSSon ratio of the bead material. The experiments give

as a model of compressed emulsions and foams which allé/“zl'l_l'g[ﬂ’zai EMT p_redlcts Ke/ 1e=0.71, if we

usually modeled as viscoelastic spheres without tangentié?ke vg=0.2 for the Poisson ratio of glag(é?he EMT predic-

forces[33-39 (see Appendix ¢ tion is rather insensitive to variations ofy K/ ue
For the case of frictionless grains one finds =0.7120.04 foryy=0.2£0.1) Conversely, a valugy=1.2

would be needed in order to fit the experimenta)., clearly

k 6 1/3 3 3 g Nt _
Kd(p) = _n(¢z)2/3<ip> , (12) violating the upper thermodyna_mlc limit ofg_< 1/2 [8]. _
127 K, Another quantity of interest is the effective Poisson ratio
of the packv. According to EMT, v, is again independent of
K, 6mp |3 pressure and given only in terms of the Poisson’s ratio of the
Me(P):EUbZ)m e (13 grains:
def
(i) Path-dependent model&; # 0, frictional grains In v :e Ke = 2/3p¢ - Y (18)
this case tangential elastic forces are taken into consider- ¢ 2(Kg— 1/3ue) 2(5-3vy)
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Thus for typical glass beadsy;=0.2) we find a predicted For a perfectly elastic solid the relaxation modulus is in-
value of v,=0.02 which is one order of magnitude smaller dependent of timeG(t)=G=constant, and one can define the
than typical experimental values=0.28[21]; another seri- shear modulus of the solid as
ous disagreement. def
. The origin of the above discrepancies has not be_en clear: fo= 0y €15= G. (21)
it could be due to the breakdown of the Hertz-Mindlin force
law at each grain contact, or it could be associated with th&Ve will show that the instantaneous response of the vis-
breakdown of the elasticity theory applied to granular syscoelastic granular materialG(t=0), represents the shear
tems. de Gennef7] proposed that a thin shell of oxide modulusu, as calculated by the effective medium theories of
layer would give a faster growth with stress of the elasticcontinuum elasticity.
moduli of the system, which may explain the behavior for For a Newtonian liquidG(t) = »4(t), where 7 is the vis-
metallic beads. Goddai@] proposed that sharp angularities cosity. For a viscoelastic liquid(t) approaches zero as
of the graing(for instance sand graipsnay modify the con- t— . For a viscoelastic solid, structural relaxation and elas-
tact force law between grains, giving rise to a different stressicity lead to a finite modulus ats— o:
dependence. Other authof®,28 have suggested that the
increasing number of contacts with stress may be the reason p=G(t— ). (22)
for the discrepancies in the stress dependence of the moduli, similar analysis can be performed for the bulk modulus
Jenkinset al. [28] measured the elastic moduli using numeri- K (t) defined as
cal simulations for a single pressure and concluded that EMT
does not correctly describe the shear modulus but it describes ;i (t) = 3;K(t) (23
the bulk modulus fairly well. Other experimental work done . _
by Liu and Nage[25] and Jiaet al. [26] concentrated on the to obtainK(0)=K, and

role played by force chains in sound propagation. Different K=K(t— ). (24)
approaches for one dimensional elastic chains have also been | ) )
applied to wave propagation in granular mef#8,3q. Equationg22) and(24) will be used to calculate the moduli

in the simulations.

D. Linear viscoelastic constitutive models E. Molecular dynamics simulations
In order to understand our results it is important to gen-
eralize the elastic concepts introduced above to the full Visz,oment on each grain depend on the choice of intergrain

coelastic response. In linear viscoelastid®g], the current .o laws[37,38. Here, we follow the discrete element
state of stres§ specif_ied by the stress_ tep:ﬁds detgrmined method (DEM) developed by Cundall and Strag&7] and
by the past history via a linear constitutive equation solve Newton's equations for an assembly composed of soft
t elastofrictional spheres interacting via Hertz-Mindlin contact
ajj(t) = f Gij (t—t") gq(t")dt’, (19 forces and Coulomb friction as described in Sec. [I7A We
- employ a time-stepping, finite-difference approach to solve
the Newtonian equations of motion simultaneously for every
grain in the system:

In MD simulations of granular matter the net force and

where €= dey/ it is the strain rate, anG;,(t) is called the
relaxation modulus tensor.

For an isotropic linear viscoelastic material, the relaxation F=mx, (25)
modulus tensor has only two independent components. These
are the shear relaxation modul@st) and the bulk relaxation .
modulusK(t) characterizing the response to sheg and M =18, (26)

bulk deformatione;. The relaxation modulus(t) andK(t)  whereF andM are the net force and moment acting on a
are conceptualized as the time-dependent analogs of thgiven grainm andl are the mass and moment of inertia, and

shearue and bulk modulus; in elasticity theory. X and @ are the linear and angular accelerations of the grain,
In this study we will concentrate on the stress relaxat'oq'espectively.
after a sudden strain imposed via a simple shear, a puré 1o hymerical solution of Eq&25) and(26) are obtained
shear, or a uniaxial compression. For example, a shear strafy, jnegration, assuming constant velocities and accelera-
is applied instantaneously, &0, from its initial value of  5ns for 4 given time step: linear and angular velocities are
zero to a final, constant valug,. For this situation we have  getermined from the knowledge of the force and torque, and
€12) = €0(t). Equation(19) reduces to grain displacements and rotations at the next time step are
ool) = €15G(1). (20 _cal_culated from _the_ average velocities. Grain motions can be
initiated by gravitational forces, by external forces prescribed
Therefore, this strain protocol immediately yields completeby stress or strain rate boundary conditions, and by forces
information on the response functid@(t) [shorthand for resolved at intergrain contacts. Strain rates are assumed to be
Gio14t) herd simply by measuringri5(t). This is a strain  low, and small time stepAt are chosen to ensure that the
protocol which is particularly simple to implement in our disturbance of a given grain only propagates to its immediate
MD simulations. neighbors(see Appendix D
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Viscous dampingDamping of grain motions must be in- transmitting
cluded in the calculations to prevent the continuous oscilla- tmdm}'\ Follrelatgs
tion of an elastic system. Although damping is a physical v

reality, and physically meaningful mechanisms might well be
incorporated, our concern here is to get the simulations to sarple

equilibrate to the final answer in a reasonable amount of glass bearls s’f“ufsg;ea:hkg
computer time. 1
Several damping methods are possible. Global damping L¥DTL. — I LT
considers the particles immersed in a viscous fluid and is T
provided by introducing viscous force terms in E(&5) and hose clamps
(26). These drag forces are proportional to the absolute ve- N
Iocity' and angular velocity of the particles:—vy,x, and tmﬁ*‘ﬁr
~=-v0, where they's are the global damping coefficient
related to the viscosity of the immersing fluid/hich could FIG. 1. Container and transducers-LVDT apparatus used in the
be, for instance, ajr sound propagation experiments.

Global damping is introduced to guarantee that the system

can reach an equilibrium state with zero velocity at a giverpressure. From the experimental data of Domef2y, we
pressure. Its physical significance is being studied at the MGxpect compressional velocitieg~ 1000 m/s and shear ve-
ment by experiments and computer simulations. Anothefocities v,~500 m/s at low pressures. We perform ultra-
source of damping implies a contact force term acting akonic measurements with pulses of frequerieys00 kHz,
every contact point, proportional to the relative velocities ofgnd we find that the maximum size of the beads should be
the grains. Microscopic contact damping occurs due to thk<y/(2f). Then, we choose a set of glass beads of diameter
viscous dissipation of energy in the bulk of the particle ma-45 wm in order to reach the desired low pressures.
terial when they are deformed and it may also occur if liquid  The glass beads were cleaned and dried to avoid any ag-
bridges are formed at the contact points between the pagjomeration (electrostatic forces or moistyreThe glass
ticles. Here, a damping force is added to each contact forcgeads were then deposited into a flexible contaiifggon
Egs. (3) and (5), proportional to the relative normal and gjeevg of 3 cm height and 2.5 cm radius. Transducers and a
shear velocitiesp,& and B;S, respectively, with3, andg; the  pair of linear variable differential transforme(sVDT, for
contact damping coefficients. Typical values of the dampingneasurement of displacemgntere placed at the top and
constant are given in Ref38]. bottom of the flexible membrangsee Fig. 1

In this study we will use global damping for the prepara- Before starting the measurements, a series of tapping and
tion of the sample and the calculation of the elastic constantwibrations were applied to the container in order to let the
This procedure is necessary to achieve the final equilibriungrains settle into the densest possible packing. Our goal is to
states which we wish to exploisee Appendix B for a dis- establish the sample in the reversible state described by, e.g.,

cussion. Fig. 2 of Nowak,et al.[39]. The entire system was then put
Computation of stressThe macroscopic stress tensor for into a pressure vessel filled with aisee Fig. 1L We then
point contacts in a volum¥ is given by[10-12 applied confining pressures ranging from 0 to 140 Mpa. The
pressure was cyclically applied several times until the system
oy = 1 > (FiRn + RNF)), (27)  exhibited minimal hysteresis. At this point shear and com-
2V contacts pressional waves were propagated by applying pulses. The

sound speeds and corresponding moduli were obtained by
measuring the arrival time from “head to head” of the trans-
ducers for the two sound wave types.

wheref is the unit vector joining the center of two spheres in
contact.

IIl. ACOUSTIC EXPERIMENTS B. Acoustic measurements

In the simplest experiments, a packing of glass beads is The results we obtain are plotted in Fig. 2 and they com-
confined under hydrostatic conditions and the compressionglare well with the available data of Domenif®1] for the
and shear sound speeds,andv,, are measured as functions range 0—40 MPa. There remains a hysteresis component be-
of p [2,21-23. tween the cycle upwards and downwards in pressure which
In the long-wavelength limit, the sound speeds are relateds representative of the packed system. A more detailed com-
to the elastic constants of the aggregate by Etjsand(2).  parison with theory and simulations is done in Figs. 4 and 5,
Here we perform our own experiments according to standaréelow.
sound propagation techniquil,23. Because of the deformation of the glass beads the height
of the system decreases with the increasing pressure. In order
to obtain the correct velocities from the arrival time of the
signal, we accurately measure the displacement of the trans-
We used a set of high quality glass beads of a smaltlucers as the pressure is increased with a pair of LVDT’s. In
enough diameter to measure an appreciable signal at lomrder to avoid fracture of the particles due to the external

A. Experimental configuration
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00 ' ' ' ' ' ' ' could calculate the elastic moduli. Our calculations begin
o Cydetp with a numerical protocol designed to mimic the experimen- _
Cycle Down tal procedure used to prepare dense packed granular materi-

*—_* Domenico ] als at a given confining pressure. In the experiments, the

initial bead pack is subjected to mechanical tapping and ul-
trasonic vibration in order to increase the solid phase volume

o fraction, as discussed in the previous section.
E 1500 [ During the numerical preparation stages we turn off the
b transverse force between the grafks=0); because there are
no transverse forces, the grains slip without resistance and
oo | the system reaches the high volume fractions found experi-

mentally during the initial compression process. We found
that by preparing the system with frictional and elastic tan-
gential forces, the system reaches states of lower volume
500 : s s s s - s fraction. A more complete study of this effect will be pre-
60 80 100 120 140 . . .

p (MPa) sented in an upcoming papgt0]. In the following calcula-

tion we concentrate on the preparation without friction, so

FIG. 2. (a) Wave velocities versus pressure obtained in our ex-that we can obtain the most compact states possible, mim-
periments. Also shown are the results of Domerfizd] for com- icking our experimental procedure. We then restore the tan-
parison. We cycle up and down in pressure to avoid hysteresis. gential Mindlin force and friction when we calculate the

pressure we use small particle sizes to reduce the intensity ggagigrt?r?niﬁ?\tz set of noncontacting particles. we first an-
the contact forces. To get a qualitative idea of the presence ofI I v% mobression to bring th 9 prti I ,I ; ntilp
crushing within the system we observe the sample under Y & SIOW COMPression 1o bring the particies closer until a

microscope after the experiments. We find that crushing ocSPecified value of the pressure and coordination number is

curs only in a very small fraction of the beads. When the@ttained. This initial compression is specified by the dashed

experiment was repeated with larger beads of diametdf"€S in Fig. 3a). If the compression is stopped just before
0.3 mm many particles appeared to be crushed after applyingaching a volume fraction of random close packisgeci-
pressures of 140 MPa. Moreover, during this test there was #d as Point A in Fig. @)] and the system is allowed to
strong acoustic emission and a severe inflection in the souriglax, then system will relax to zero pressure and zero coor-
speeds could be noticed as we increased the pressure durifigfation number, since it cannot equilibrate below the maxi-
the first cycle upwards due to the crushing of the beads. Fgnum close packing fraction. This is indicated in Figa)3as

the beads of size 4am, no inflection is observed and no the decrease of the coordination number and pressure to-

acoustic emission is heard during the experiment. wards zero. The compression is then continued to a point
above the critical packing fraction at a target presguré&he
IV. NUMERICAL SIMULATIONS target pressure is maintained with a “servo” mechar{i3#

We perform MD simulations of a system of 10 000 which constantly adjusts the applied strain ratentil the
spherical particles in a periodically repeated cubic cell ofSyStem reaches equilibrium pf according to the following

approximately 4-mm sides. The particles interact via HertzPrescription:

Mindlin contact forces and we choose typical values for e=g(p-p) (28)
glass beads fouy=29 GPa and,=0.2 for a close compari- v

son with experiments. We assume a distribution of grain radiivherep is the actual pressure of the system anid a gain

in which R;=0.105 mm for half the grains and?, factor which is tuned to achieve equilibrium at every given
=0.095 mm for the other half. Our results are quite insensipressure in an optimal way.

tive to the choice of the size distribution. We include viscous
damping terms to allow the system to relax toward static
equilibrium as discussed in Sec. Il E.

The general scheme of the simulations is as follows: The The above protocol is repeated for different target pres-
simulations begin with a gas of 10 000 grains distributed asures and we obtain the average coordination nurzbef
random positions inside the cubic cell. We first apply a comihese equilibrium states as a function of the pressure, as seen
pression protocol so that a dense random packing is genei? Fig. 3@. Several important points can be seen from this
ated corresponding to a predetermined value of the pressurlot. First, the average coordination number increases with
Then, an incremental infinitesimal compression or shear i§he pressure as expected. Second, we find that the coordina-
applied to the unit cell and the change in stress is computedion number of the pack approaches a critical minimal value
once the system re-equilibrates. Thus we obtain the bulk anelose toZ.~6 asp— 0. At low pressures, compared to the
shear moduli for the system at each confining pressure. ~ shear modulus of the beadp<26 GP3, the system be-

haves more like a pack of rigid balls. At this point the beads
A. Reference state: Numerical protocol are minimally connected &.~ 6, while in two dimensions

One of the critical issues in this study is how to obtain a(see Appendix [ the same preparation protocol givés

proper rigid frame of reference E(), {R}, from where we =4 [Fig. 3¢)].

B. Coordination number

061302-7
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ok f_cf'l ' ) al') ' ﬂ ) 'r ) ' We also measure the volume fraction as a function of
@ fnctionless packs, re limi . . oy
' sotspnere pressure and find that it approaches a critical valuepof
~0.63 in the rigid ball limit agp— 0:

d(p)=¢ +( P B)O'GZG) (30)
c \14GP '

hard sphere limit

Z=6

The value of ¢.=0.63= ¢rcp corresponds to the volume
fraction at random close packirgep): the densest possible
random packing of hard spherg41-43, since the hard
sphere limit in our system of deformable particles is
7 r . r achieved when the pressugdeformation vanishes(rcp is

@ frictional packs, 3D only achieved asymptotically in our simulation$he expo-
nent 0.62 is consistent with dimensional arguments which
would predict a value inverse of the power law between the
force and displacement in the Hertz law, i.e., a 2/3 exponent.
The exponent in Eq29) is determined by the behavior of
the pair distribution function near jamming. These exponents
agree with similar calculations done by O’Heen al. [44],

and they will de discussed in more detail in Ref0].

The low value ofZ; is very significant(this number
should be compared, for instance 2o 12 for a fcc packing
because at this minimal coordination the equations for the
force distribution can be solved without reference to the state
¢~ frictionless packs, 2D of strain in the system. This is the isostatic lirfi6,17 and
the starting point of recent theories of stress distributions in
sk i granular packg18,19,45. Concepts such as fragility and
s marginal rigidity depend on the existence of this minimally
N connected state. In the conclusions we will come back to
discuss this issue. As previously reported in R¢18,49,

4 © 1 Eq. (29) provides a numerical evidence of the existence of
the minimally connected state in frictionless granular packs.
10 0 10° For other numerical work see Rg#7].

p [Pam] To test the robustness of these results, we have employed

o ) , a second protocol in which the system is prepared by com-
_ FIG._ 3. Cooro_lln_atlon number versus pressure obtained in th‘i)ressing to a point beyond the rcp fraction, then letting the
S|mulat|on_s,.(a) FI_‘ICtIOI‘ﬂeSS packs in three_dl_mensmns. T_he SyStemgrains relax to equilibrium without the servo mechanism.
becomes isostatic gs— 0 andZ=6. (b) Frictional packs in three 3 fin47() curve is essentially identical to the one shown
dimensions. Is the isostatic lim&.=4 reached asymptotically as in Fig. 3a). For this reason we believe that we have accu-
p—0? See Ref[40] for details. (c) Frictionless packs in two di- ratel .a rloximated the reversible state of dense random
mensions. Here the system is isostatic with=4 asp—0. pack)i/ng piF;] the sense discussed by Novealal. [39]
L It is important to recall that the above results have been

Such low coordination numbers can be understood inyained for a system without friction. A similar preparation
terms of slr_nple constraint arguments for a systerh dfic- protocol for grains with friction gives rise to different pack-
tionless rigid particles i dimensiong16-19. We need 10 44 with lower coordination number. Similar constraints ar-
determineZN/2 normal forces withDN equations of force guments as explained above giEg=D+1 for this case. Fig-
balance. We find a critical coordination number for which the ;.o 3b) shows Z(p) obtained for a system with friction
equations of force balance are solubleZas 2D. For large showing that a minimaZ,~4 in three-dimensions may be

valutestof thz ctc;]nfmmg Eresﬁure morebgra_ms are bro;Jght 'r?:gpproached asymptotically gs— 0, although at a slower
co_n_acl, aT € (_:océrflna 'Og.l.mfmh er increases drom "Fate than in the frictionless case. Is tAg=4 isostatic limit
m|n|_mad Vé ue.rgqtljllre ofr_ Séa. ! 'tr)]/’ ¢ %system IS UNCErcon-chieved ap—0? We have given a positive answer to this
strained. Empirically, we find in three dimensions question in Ref[46]. However, recent studig@7] suggest
that this may not be the case. We refer the interested reader

p 0.305) to an upcoming paper on this wofkQ] for our more recent
I (290 results showing that the rate of compressianalogous to
10 MP : . A

the rate of cooling ba a glass-forming liquid below the glass

The pressure 10 MPa is significant since it determines the&ransition plays a significance role in achieving the isostatic
characteristic pressure of the crossover from the minimal colimit in frictional packs. From now on we will concentrate on
ordination number to a larger one. the calculation of the elastic properties of granular media

(o]

102 3 4 5

Z(p)=Z.+ (
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using the states depicted in FigaBas our starting point. Of gy T T T
course, we will restorek,#0 for the calculation of the ol 0 Domenicosxperiments, Rt 21 ]
moduli. ©—@ Simulations

C. Calculation of elastic moduli with MD

Consider the calculation of the elastic moduli of the sys-
tem as a function of pressure. Beginning with the equilib-
rium states of Fig. @) we first restore the transverse com-
ponent of the contact force by settikg” 0. We then apply a 102k L L L L
small perturbation to the system and measure the resulting pd&pa]
response. We do not expect slippage to occur since we apply
infinitesimal strain perturbations, but since we deal with a
finite system we set the friction coefficient to a large value
to avoid sliding at the contacts. The elastic moduli are cal-
culated by applying a given affine infinitesimal strain pertur-
bation Ae as given by Eq(10) and then monitoring the re-
sponse of the corresponding strest) as a function of time.
After the system equilibrates again &s o, the moduli are
obtained from Eqs(22) and (24) as the change in stress
between the final state and the stress before the perturbation
Aol/Ae. The procedure is repeated fdke— 0 to guarantee 10
that we are testing the linear response regime where the elas-
tic moduli become independent dfe. Interestingly we find FIG. 4. Pressure dependence of the elastic mot@lbulk and
that the region where the elastic constants are well define&)) shear moduli from MD, our experiments, Domenico experi-
decreases as the pressure decreases. This is in agreemeRhis and EMT.
with the prediction of the EMT for the third order elastic
constants which are found to diverge ag 2~ p™/3 [12].

The shear modulus is calculated from a simple shear te

T T T T
= = EMT
O Domenico experiments, Ref. [20]
O  Our experiments
10 ©®—@ Simulations

u [MPa]

0 10"
p [MPa]

&xperimental data are somewhat scattered at low pressure. It
reflects the difficulty of the measurements, especially at the

(Ae,=Aey,# 0) as given by Eq(7),

_1A0'12

M_ZAGJ_Z’

lowest pressures where there is a significant signal loss. Nev-
ertheless, our calculated results pass through the collection of
available data. It should be noted that the experiments are
compared against the numerical results without resorting to

and also from a pure shear test wille;;=—Ae,,:

_1(Aoyp—-Ady)
- 2 (AEZZ_AGJ_]) '

We find that the values ofx determined from these two D. Breakdown of the EMT: Problems with u
methods agree with each other, as expected for an isotropic Also shown in Fig. 4 are the EMT predictions Eqs2)

system. . : L and(14) using the same parameters as in the simulations. We
The bulk modulus is obtained from a uniaxial compres-c - _g and$=0.64, independent of pressure. At low pres-
I%tures we see tha& is well described by EMT. At larger
pressures, however, the experimental and numerical values
Aoy, 4 of K grow faster than thg'® law. The situation with the
= Ae. 3™ (33 shear modulus is even less satisfactory. EMT overestimates
€y 3 : . ;
n(p) at low pressures but, again, underestimates the increase
Here the stress;; is determined from the measured forcesin wu(p) with pressure.
on the grains Eq(27) , and the strairg; is determined from To investigate the failure of EMT in predicting the correct
the imposed dimensions of the unit cell. For instaneg, pressure dependence of the moduli, we re-plot the moduli
=AL/L, whereAL is the infinitesimal change in the 11 di- divided byp*®in Fig. 5.
rection and_ is the size of the reference state at the gipen For such a plot, EMT predicts a horizontal straight line
The results of our numerical calculations fif(p) and  but we see that the numerical and experimental results are
m(p) are shown in Fig. 4. These results have been obtainedearly increasing withp. It is tempting to try to fit the data
for packings of 10 000 particles. Calculations done with 432with another power law. However, we must first include the
spheres show similar values indicating that the results arpower law dependence of the coordination number and the
free of finite size effects. We see that our experimental andolume fraction with the pressure as given by E@®) and
numerical results are in reasonably good agreement. Als¢B0). Thus we modify Egqs(12) and(14) to include the pres-
shown are data measured by Domenj@d]. Clearly, the sure dependenc&p) and ¢(p) (this latter is a much smaller

the use of fitting parameters, since all the constants charac-
terizing the grain materialuy and vg) are known from the

o (32) properties of the grains.

in the other directionf e;,=A€e33=0, andAe;; # 0:
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1000pr

DA T T tally, at least for glass beads and other rigid materials. It
T o Ret, (20 would be interesting to see if such a crossover could be ob-
800k .g.gi:uely;ﬂ:::lems - SerVed in SOf'[er ma’[el’ia|S.

% The substitution of Eqg29) and(30) into Egs.(12) and
E‘eoo- (14) is something of amd hocprocedure; Eqg12) and(14)
were derived under the assumption tFaand ¢ are stress-
—————— independent quantities. Within the context of the affine as-

400 . @ sumption, the EMT derivation can be modified to account for
= a continuously changing coordination numk#p). Let us
200kt . : . : assume that, in the limit of zero pressure, there is a probabil-
107 10° ) [}\9111’3] 10° 10° ity distribution P(h) of gap sizes between each ball and its
neighbors:
= g P(h) =Z.8(h) +ay +ah+ -, (35)

0 Domenico, Ref. [20]

-
o
o
(=}
T

O  Our experiments .

e Simulations where Z,=6 represents the coordination number at zero
stress and the rest is a Taylor’'s series expansion arbund
=0. It is straightforward to re-do the derivations leading to
Egs. (12) and (14) following the prescription in, e.g. Ref.
[12]. The results, expressed in terms of the static compres-
sive strain,e<0, are

2
20015)" 1:>° 12)‘ 1:)2 1;)3 p= ¢_kn[zc(_ €%+ —(a,R) (- €)>?+ - } ) (36)
6 5
p [MPa]
FIG. 5. Elastic moduli(a) bulk and(b) shear, normalized tp'/3 _ ok,

2
12, = _ 324 ...
and corrected EMT taking into account the pressure dependence of K {Zc(_ e+ 3(alR)( €+ ] : (37

12
Z(p) from Fig. 3a) as well as¢(p). 4
Using a judiciously chosen value af # 0, and neglecting,
effect, see beloy The corrected EMT is also plotted in Fig. @nd all higher-order terms, a cross plot of E§7) against
5 and we see that it predicts the same trend with pressure &§- (36) mimics the molecular dynamic simulations in Fig.
the simulations. The experimental data also seem to be foft- We ”2}36' however, that, taken literally, E§5) predicts
lowing this trend but more data over a larger pressure rangé~4c* P~ for smalip, in contrast to Eq(29). _
are clearly needed. Since the bulk modulus is approximately described by the
in essentially exact agreement with our numerical simulaf‘(p)' .In Fig. 5 it IS shown that even though the pressure
tions and experimental data. Thus we tend to conclude th4fénd is well described by the corrected EMT, the theory still
the anomalous scaling found in the experiments is be a meQVerestimates the value of the shear modulus. We will see
surement of a crossover behavior as obtained by combininigter that the overestimation depicted in Fig. 5 becomes enor-
Egs.(12) and(14) with the nonlinearity of Eqs(29) giving  Mous when the tangential forces are diminished towards

rise to two distinct scaling regimes: zero. In this limit, the breakdown of the EMT is clearly es-
tablished.

K(p) ~ u(p) ~ p*'3, for p< 10 MPa, Another way of seeing the breakdown of EMT is to focus

on the ratioK/u, which is independent of pressure in the

K(p) ~ u(p) ~ p*®, for 10 MPa< p < 14 GPa. theory Eq.(17) , the simulations, and approximately so in the

experiments, as seen in Fig.(@he variation at low pressure
(34 o . )
may reflect the difficulty in propagating sound at low con-
Here we have not included the pressure dependence of thiming pressure$.The experiments giv&/u=1.1-1.3. Our
volume fraction Eq(30) since it appears at the very large simulations giveK/u=1.05£0.05 in good agreement with
pressures above 14 GPa. At these pressures the beads are exqieriments. Notice, however, that the EMT prediktsw
supposed to follow anymore the Hertz Igand they may, in  =0.71, as mentioned earlier. Moreover, the effective Poisson
fact, fracture. Therefore we exclude this regime from our ratio from simulations,y=0.27, is in excellent agreement
scaling analysis in Eq.34). with that of the experiment= 0.28, but greatly differs from
Since the experiments are usually done near the crossovtre theoretical predictiom,=0.02, Eq.(18).
pressure of 10 MPa, it holds to reason that they could be
measuring a crossover behavior rather than a true scaling E Role of transverse forces and rotations
regime. Moreover, even for pressures larger than 10 MPa the '
Hertz contact mechanics approach might fail since the Hertz To understand why: is overestimated by EMT we must
theory is based on small perturbations. Thus the true fina¢xamine the role of transverse forces and rotations in the
scaling regime Eq(34) might not be accessible experimen- relaxation process of the grains. These effects do not play
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— ' ' ' By contrast the bulk modulus agrees reasonably well with
1.4} O  Domenico, Ref. [20] . )
g Owspemann EMT regardless of whether there was perfect slip or perfect
19 < odM ] stick. What is the most serious problem with the elastic
SO0 °n theory? In the next section we will focus on the role of stress
= Opg . . . . .
P ry I o I I relaxation and the nonaffine motion of grains due to disorder.
. o First, however, we wish to eliminate a conceptually sim-
0.8 . pler effect of disorder as the explanation for the behavior of
———————————————— w(p). In the simulations(and presumably in the experi-
0.8 . . . . N menty, it is not true that each grain has the same number of
107 10° 10 (vpay © 10° contacts. Rather, there is a distribution of contacts ranging
p

from Z=3 to Z=10 with a peak aZ=6, which is near the

FIG. 6. RatioK/u for MD, experiments, and EMTpressure average(z:6.l4 at 100 KPp Thus the local elasticity
independent moduli can vary widely from one grain to another. There is a
well-developed theory for just such situatio@8], which is

any role in the calculation of the bulk modulus. According to IS0 called a "self-consistent effective medium approxima-
the EMT, the transverse fordg contributes only to the shear tion” (sc-ema. Let K; and n; be the moduli for spherical
modulus and not to the bulk modulfisee Eqs(12)<14)]. inclusions whose volume fraction &. The effective elastic
We are therefore motivated to examine the behavior of th&onstants for the composité and u', are determined by
moduli as a function of the strength of the transverse forcethe simultaneous solution of the following coupled equa-
We replace the tangential stiffneksin Eq. (4) by ak, and ~ tIONS:
redefine the transverse force as K' = K.
> c6——>==0 (39)
AF, = a k(R&)V2As; (39) K+ (419

«=0 is appropriate for frictionless couplingerfect slip, ~ and

whereasa=1 describes the fully frictional resuliperfect . _
stick) and corresponds to the results described so far. To Eci'“ '“' =0, (40)
quantify the role of the transverse force on the elastic i MmitF
moduli, we calculatK(a) and u(a) varying « from 0 to 1, where
at a given pressurg)=100 KPa, low enough so that the
changing number of contacts does not play a role. . w(9K" +8u")
The results are plotted in Fig. (€urves labeled Md To - m (41

compare with the theory we plot the prediction of the EMT

Egs. (12) and (14) in which k, is rescaled byak; (curves Effective medium theories of this sort generally work well in
labeled EMT). (The curves labeled MD AM are discussed in situations in which the disorder is not too grgatich as

the next subsectionThe simulation confirms tha is es-  when there is a log-normal distribution of constituent prop-
sentially independent of the strength of the tangential forcegrties, or when one is near a percolation threshditbre-

both theory and simulations show a flat line in Fig. 7. Sur-over, the sc-emas have certain desired properties, such as
prisingly, the shear modulus is extremely sensitive to thecorrect limiting values and lying within upper and lower
tangential force and becomes negligible small in the limit ofoounds. See Ref48] for details.

frictionless particled«— 0) dropping to less than 10% of Here we take the view that the system is a composite
the predicted EMT value. We see that the EMT badly fails inconsisting of spherical inclusions, each of which has moduli

accounting for the vanishing of the shear modulugras0.  given by Eqs(12) and(14). In the case at hand it is useful to
rewrite them in terms of the local value of the compressive

T r T r strain, € <0, within each inclusionsee Ref.[12] for de-

_Soor 3 tails):
]
S ok
;200 __________ — 5 o— 4 ] Ki =1 Zi(_ Ei)3/2’ (42)
= 127
=}
=]
: e 3
E| oo ] ¢(kn + Eakt)
= .y, .
. | e pi= e Z(- &)*. (43)
.0 0.2 0.4 0.6 0.8 1.0

* Of course, grains with a large number of contaZscan

FIG. 7. K(a) and u(a) versusa for a fixed p=100 KPa as be expected to have a smaller than average compressive
calculated numerically with M@noted MD), as calculated numeri-  Straine;. In order to relate; to the macroscopic straigl, we
cally using only the affine motiomoted MD AM) and as predicted recognize that the spirit of the sc-ema is that each spherical
by the EMT (noted EMT). inclusion is surrounded by the host material. Therefore it is a
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simple elasticity problem to show that the differential change 08 B T
in strain within a spherical inclusion is related to the differ-
ential change in macroscopic strain by L T
o) 2 laxation
K'+@4R3)u" . S 138 fecooooa- relaxaton ______ i
de = (—)'u*de : (44) & o4 & >
Ki+ (43 u S| E
0.2 -
We take the distribution of contac{s;} from our simulation ° Acwl
at 100 kPa. It is straightforward to solve the system of equa- oobtA A C
tions (39)—(44). The EMT we have been discussing corre- e 8‘2. .T
sponds taZ,—(Z) and ¢ — €"; for the casex=0, and using 0 2000 ime steps4ooo 6000

the same material parameters as before, it may be written as
_ *\3/2 FIG. 8. Relaxation of the shear strg&— C) after an motion
Ke=16.2-€)™%, (45) affine (A — B) in the calculation of the shear modulus.

— _ *\3/2
pe= 97— €)%, (46) taking into account only the affine motion of the grains and

where the moduli are expressed in GPa. If, though, the fullgnoring the subsequent relaxation. The resulting values of
distribution of contact numbers is used in the foregoingthe moduli are obtained asyine=A0c7," "/ A€, With Aoy,

analysis the results are defined in Fig. 8. In Fig. 7 we plot the moduli calculated in
. .3 this way as a function of for p=100 KPa(curves labeled
K =15.8-€), (47 MD AM). The affine moduli are very close to the EMT pre-
dictions: there remains a 10% difference between the EMT
w =9.5-¢€)3 (48)  and the MD(affine) which is representative of the disordered

ﬁ)acking which is averaged in the EMT. Thus the difference
Petween the MD and EMT results for the shear modulus lies
Qwostly in the nonaffine relaxation of the grains; this differ-

The point of this exercise is to demonstrate that, althoug
the packing is obviously disordered, the effect of the disorde
alone is quite negligible as far as the macroscopic elasti d ;
moduli are concerned. Similar results hold fer1. Each €N 1S largest when there is no transverse force.

gan sees, mare o les, the same average enironment gs%) NSt 0 rkalon afer o sbpled conpres
any other. In the next section we investigate the effects o b P y sl9

disorder induced relaxation, which, we believe is the under;SeSE'\eﬂr-]riﬁri?'C“?ons for the bulk modulus are quite accurate
lying effect behind the small values @f(p) we are observ- 9. 7
ing.

E Role of relaxation and disorder G. Isostatic limit as a critical point

In the EMT, we saw that if an affine perturbation of the _The surprisingly small values we found far as a—0
form (10) is applied to the system, the grains are always af@iS€s several questions. We notice thaandp are the only
equilibrium due to the assumption of isotropic distribution of ariables with the dimension of pressure in this limit. A scal-
contacts and further relaxation of the grain is not significant/"g argument would lead to
The response is th(_en purely eI.astic. _ _ . w~ Kk (plk,)". (49)

On the contrary, in the MD simulatiorfand in the experi-
mentg after the application of an affine perturbation via the The Hertz theory predictg=1/3, aresult which we find to
motion of the boundaries and grains, the beads in the immdde valid at low pressure for frictional grains. Indeed, quite
diate neighborhood of each grain move around, relative t@enerally if one assumes that each grain-grain force scales as
the center grain, in a way which gives rise to a stress relaxEgs.(3) and(4) and if one assumes the arrangement of the
ation associated with these rearrangements of particles. ~ grains, however disordered that may be, does not change

Figure 8 shows the behavior of ,(t) = €,,G(t) as per Eq.  With pressure then both moduli scale as in Ep) with »
(20) for a system ap=100 KPa and withx=0.2 during and =1/3. This argument specifically presupposes that, e.g., the
after the application of the affine strain perturbatide,,  average coordination number does not change with pressure.
which moves all the grains according to the external strain Since there are no other constants that could reduce the
Eg. (10). We see how the system behaves as a viscoelastiglue of u for «—0 we are lead to believe that a new ex-
solid as explained in Sec. Il D. When the affine perturbatiorPonentz should describe the shear modulus for frictionless
is applied, the shear stress increadesm A to B in Fig. 8§  packs. This is an effect which lies outside the standard as-
and the grains are far from equilibrium since the system igumptions of elasticity theory, as indicated above. Sipce
disordered. This is the instantaneous elastic response. Thek,, then »>1/3. To give validity to our hypothesis, we
grains then relax towards equilibrium gsom B to C), and  plotin Fig. 9u(p) for a=1 anda=0. We see that a better fit
we measure the resulting change in strss, ast— from  to the low pressure behavior g(p) for «=0 is achieved
which the modulusx is calculated as in Eq22). with »=2/3. Notice that we deliberately try to fit the data at

For a better understanding of the approximations involvedow pressure to avoid the issue of the increasing coordination
in the EMT, suppose we repeat the MD calculations nownumber.
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FIG. 9. Shear modulus versus pressure for frictiqrast 1) and FIG. 10. Behavior of the shear modulus and the coordination
frictionless(a=0) particles. number for thel network. We use the packing at 100 KPa depicted

in Fig. 11(a) for this calculation.
How can we explain the 2/3 scaling behavior? A possible

answer could be provided by a recent conjecture by Alex- 1
ander[16] who proposed the following scaling: o1ld) = Z—V‘%{(FRH +RnF), (52)
e~ knA(P) (plky) 7, (50 from which we obtain the shear modulus for theetwork as

where the functionA(p) is determined by the geometry of “(£)=Ac1({)/ A€, (for {—c we recover our previous re-
the reference frame of rigidity, E@9), which is determined, sults.

in turn, by the pressure. Assuming that the lirpit>0 is Figure 10 shows the result gf(¢) for p=100 KPa and
indeed a critical state of rigidity, then we expect a=1 and should be compared with Fig. 4 in RE82]. In
contrast with the two-dimensioné2D) results of Ref[52]
A(p) ~ p*, (51)  we find no evidence of a bimodal distribution of forces

which would explain the anomalous scaling for the friction—Wr:1ICh Woglo: glv\elzvrlse tothatptﬁrcolr?tlonl|kedb|ehaV|o(; tohf the
less grains witth=1/3, while for frictional grains we would ~>'ar MOAUILS. YVe Se€€ that the shear moduius and Ine coor-

_ dination number increase continuously as we incréase
havex=0. )
We also repeat the same calculations for our two-
dimensional packings and find the same result as in three
H. Microstructure and force chains dimensions, i.e., we find no evidence of a bimodal character
The velocity of acoustic signals probes an effective me_in the behavior of the shear modulus versus the force cutoff.
he fact that we do not see the same behavior in two dimen-

dium which should be homogeneous at length scales Iargél;

than a typical correlation length of the material. Experimen-Sions as in Ref[52] might be related to the regularization

tal and numerical work indicates that there is an internafchéme used in our MD simulations to handle the frictional
structure at length scales10d, whered is the typical size of [0rces which may eliminate the critical behavior found in
the grains: the forces are observed to be localized alonfef- [52]. Radjaiet al. used a contact dynamics algorithm
“force chains” carrying most of the loads in the systesee _hlch tackle the n_on;mooth character of the interactions
Fig. 11) [46,49-5]. A question of interest is how such a Without any regularization schemes. .
microstructure affects the properties of the system at macro- _F19Uré 11 shows our attempt to visualize force chains in
scopic length scales where the elastic continuum theory iS2 Packings(a) without friction under isotropic compres-
valid [26]. S|on,_(b)_ with _frlctlon_ under _un|aX|aI compression, anch in _
We want to quantify the relevance of force chains to the2P frictional isotropic packings. Force chains are not promi-
elastic moduli. We calculate the shear modulus as a functioR€Nt In the 3D isotropic frictionless packing. Moreover, the
of a subset of forces belonging to the strongest forces ifPntNUOUS variation ofu({) obtained for this packing seems
order to search for the backbone of grains which give rise td° indicate that all forces are important for the mechanical
the shear rigidity of the material. Is this backbone deter€SPonse to shear, and not just the larger forces which may be
mined by the force chains, or do the interstitial particles play°rdanized in force chains. However, force chains are promi-
also a relevant role to determine the rigidity? nent in t_he 3D packing under uniaxial compression and the
In this regard, recent calculations of Radjgi al. [52] 2D Packing.
have shown that the stress ratio between shear and compres-
sion shows a “percolationlike” behavior: the forces larger
than the average are responsible for most of the rigidity of
the material. This was shown to be valid in two dimensions. Since the difficulty with the shear modulus is shown to be
Here we follow Ref[52] and define & network which in-  due to the relaxation of the particles from the initial uniform
cludes only forces smaller than a cutoff foréeThen we  strain approximation, we next perform the simplest investi-
redefine the stress E(7) and compute the shear stress only gation that allows for some relaxation. From the simulations,
for the ¢ network as we know the rest positions of each of the particles, as well as

V. THEORY: SINGLE PARTICLE RELAXATION
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. - (b)

tmin = 0.00750

FIG. 11. (Color onling Force chains in granular mattgia) Frictional system under uniaxial compression néar(from Ref. [46]).
Percolating force chains are seen in this case. We apply an algorithm which looks for force chains by starting from a sphere at the top of the
system, and following the path of maximum contact force at every grain. We plot only the paths which percolate, i.e., stress paths spanning
the sample from the top to the bottoqi) Frictionless isotropic system at=100 KPa in three dimensions. We plot only the forces larger
than the average. Force chains seem to be tenuous and not well d&fjnédrce chains in a 2D frictional system. Force chains are clear
in this case.

the contact vectord @ =(x;—-x,)/|x;—X,| (the vector from a FO = K[(dDd@) - u@] + aK[(1 - dDGD) . 4],
particle to each of the particles with which it is in conpact (53)
Consider a specific particle. We make the approximation that

when a small amplitude macroscopic strain is applied itsvhereKy andKy are given by

contacting particles move according to the affine approxima-

tion. The particle will experience an unbalanced force and an Ky = 2u Rl/zél/z, (54)
unbalanced torque. Accordingly, it will relax to a new posi- 1-y,

tion and orientation such that the net force and torque on it

become zero. So, for the specific particle we calculate its 4u RY?

new position and orientation. We next calculate the energy Ky=—1—¢~ (55

stored within each of the contact “springs.” We do this for 2~

each of the particles in the simulation to calculate the totahnd ¢ is the normal displacement which can be related to the

stored energy due to the applied strain and we set this equakternal pressure through the average affine approximation

to the usual expression for strain energy in order to deducgl1] by

the new estimates for the bulk and shear moduli of the ag-

gregate. This procedure is detailed below. |37 -wy p |?
Consider a particle, labeleal which we take to be cen- €= 2 »Z ,U«_g

tered at the origin. It has, contacts at the positions

{d@:q=1,z,}. Assuming that one of the contact points is The parameter allows us to continuously investigate the

displaced by an amount® the increment in the intergrain crossover behavior from perfect slip:=0) to perfect stick

force at contacy is (a=1).

(56)
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As written, the total force on the specific particle, due to 400 T T S
the sum of all the contact forces, is not zero: —— K(a), EMT IR
— — K(o), EMT + relaxation A
def s :}“; e erel T
= L - - wo), + relaxation . /./' i
Fu=2 F¥ #0. (57) £ 300 "l
q =) o
. . . . = e
Accordingly, that particle will move to a new equilibrium cooof —— === e
positionX. Similarly, the net torque on the particle is unbal- M e
anced: L
def 108 /A/‘ 1 1
N,= E d@ x ng) £0. (58) .0 0.5 o 1.0 1.5

q

A dinalv. th ticle will rotate th h FIG. 12. First order correction to EMT allowing relaxation of
ceor 1Ingly, the particie will rotate through an angieto grains from the affine motion. This figure should be compared with
a new orientation. The generalization of E§3) that takes Fig. 7.

into account the new position and orientation is

FO@ = K[(d@Dd@) - (u@ - X)]

o simulations for the shear modulus give values that are even

+ aKq[(I =d@d@) . (U@ - X) - x d¥], (59)  smaller still. Fora=0 (perfect slip the simulations givex
=8+3 MPa, which is essentially indistinguishable from zero,
whereas from Fig. 12 we have a value of 100 KPa. We see
that relaxation effects at the single particle level, while sig-
nificant, are by no means sufficient to explain the effect. In
cot the fully frictional case ofa_:l t_here is a reduction relative
total torque must vanistE, d@x F@=0, gives the remain- to th(nT EMT but the simulation gives a value _of 20_0110 MPa.
ing three. It is straightforward to solve these equations nu{!n Fig. 12 we have extended the calculations into the un-
merically. physical range 0h>1_ to emphasize that there is a slight
Having determined the new equilibrium position and ori- ¢hange of slope, relative to the EMT. .

entation, one can show that the total work done by the con- We are thus lead to consider a more sophisticated theory

Now, the requirement that the particle is in equilibrium
set

with its contact forcesy, F@=0, gives three linear equa-

tions in the six unknownayp andX. The requirement that the

tact forces on theth particle is simply in which we ex_plicit!y af:cou_nt fpr collective fI_uctuations.
The next step in this direction is developed in RES3]
A @ (@2 where we introduce fluctuations in pairs of contacting par-
Wa=35 K2 (d@ - u@) ticles. This theory is developed for the frictionless case,
g=1

where the reduction in shear modulus is most dramatic and
Za for which we can derive an analytic result using some fairly
+aK: 2 [d9 X uPP-F,-X-N, @ (; (600 weak assumptions.
g=1
X and w are determined as described above. In order to VI. SUMMARY AND OUTLOOK
calculateW, we make the affine assumption, that the dis-
placement at the contact point is simply related to the mac
roscopic strain by Eq(10). Since we know the exact posi-
tions of each contact vectal? from the simulations, we are

Where do we go from here? We clearly need new theo-
retical frameworks to describe the collective relaxation of
granular materials, especially under shear and for frictionless
packs. Below we give a short review of some of the ideas

able to evaluate EqE0) for each particle in the e_nsemble. that have been proposed recently, and how these theories are
We now evaluat&, W,/V for a pure compression and for related to our results

a simple shear numerically and we equate the result to the
elastic energy, Eq6), in order to deduce the valueskfand A. Elastic versus fragile matter
The above procedure can only reduce the moduli relative We have seen that the impossibility of defining a strain
to those of the effective medium prediction. If, in E§0),  field which is inhomogeneous at the level of the grain is at
we assume there is no relaxatiom=0 andX=0), and if we  the root of the problems of the elastic theory: the EMT ap-
replace the sum over contacts by an integral over a presumegutoach relies on the assumption of a uniform strain field at
uniform distribution of contact directions, we reproduce theall scaleg[8,32.
effective medium theory, Eq$12) and(14). Interestingly, recent studie$l8,19,43 have proposed
The results of such a calculation are shown in Fig. 12theories of stress transmission in granular packs which de-
which is to be compared to Fig. 7. The static confining presscribe the internal stresses without resorting to the use of
sure is 100 KPa. We see that, relative to the effective mestrain variables, as in elasticity theory. These groups argue
dium prediction, there is a small reduction of the bulk modu-that cohesionless grains are in a “fragile state” of marginal
lus, which is relatively insensitive ter. There is a much rigidity or isostatic at a minimal coordination numbérand
larger reduction of the shear modulus but the results of théhey are only able to support certain loads without severe
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rearrangements. An interesting closure relation betweeformulation and allow a proper description of the response of
stress components—for instance, the fixed principal axigranular materials to external perturbations.
ansatz—and not between stress and strain—as in elasticity—

has been proposed to solve for the indeterminacy in the
granular systenji45]. ACKNOWLEDGMENTS

_The correct type of closure relatiqelastic or fragil¢ is This work was supported by the DOE, Chemical Sci-
still a question of much debaf&4], although there are recent o co5  Geosciences and Biosciences Division, DE-FG02—

experiments on the single-particle Green function Measurgj3eR15458. and the NSF, Division of Materials Research,
ments suggesting that the elastic framework might be the)\1r-0239504.

correct approach at large scal@?,55,58.
In the case of collective relaxation dynamics, our results
show that the elastic formulation is erroneous in describing  APPENDIX A: RESISTANCE AGAINST ROLLING
the macroscopic shear response of granular materials. More-  AND TANGENTIAL FORCE WITH MICROSLIP
over, we find that a very small shear modulus appears for ) ] ]
frictionless packs. This shear modulus decreases towards Our model of the intergrain contact is based on two as-
zero app—0, as¢— ¢y, and as the system approaches theSUmptions. First, we consider the no—sll_p solution of Mindlin
isostatic limit ofZ— Z.=6. for the tangential force, and we consider }otal slip of the
The vanishing of the shear modulus could be interprete@ontact area only when the total tangential force exceed
as a “fragile” behavior. In the limitz— 0 a packing of nearly ~#Fn. However, in reality, the contact may slip over an an-
rigid particles responds to an external isotropic load with arular ring of the contact area for any finite value of the
elastic deformation and a finité, since the external pertur- tanggnthl force. A genergl study for_several loading histories
bation is compatible with the principal axes of the stressconsidering that microslip occurs, i.6AF|> uAF,, was
predetermined by the preparation history of the sample. Bperformed by Mindlin-Deresiewic59] and analyzed in
contrast, such a system cannot support a shear(joae0) more detail by Thornton f_;lnd Rand§l0]. They sh_owed that
without severe particle rearrangements. Thus the granuldP® mcrel/r;lental tangential force can be obtained /sf8;
system supports, elastically, only perturbations compatibl& €k(R€)““Ast u(1-g)AF,, where e=1 when microslip
with the structure of force chains and deform irreversiblydoes not occut|AF| < uAF,) ande takes different values
otherwise, i.e., it is in a “fragile” state. depending on the path loading history of loading, unloading,
and reloading60]. We have done preliminary tests using this
more general solution of the tangential force, and found no
significant changes in comparison with the results obtained
Our results show that the fragile limit is approached as theyjth the no-slip solution of Mindlin. Therefore, we have per-
system gets closer to rcp limit, and that at rcp there is gormed our simulations using the simpler Mindlin contact
jamming transition between a liquidlike state and a solidliketheory. Besides, the EMT calculations are done using Hertz-
state with a finite modulus. The approach to the critical pointyjindlin forces, so that we want to use the same interparticle
is characterized by several power-law exponents as in fws for a better comparison between numerics and theory.
second-order phase transition. The vanishing of the shear gecond, while rotation of spherical grains is allowed in
modulus can be understood as a melting of the system oghe simulations, it is customary to model rotations without
curring when the system approaches the isostatic point. Thigsistance against rolling at the conta@@]. Regarding this
fluid IiI_<e behavior has similgrities with melting transitions approximation, it should be pointed out that some recent
found in compressed emulsions, and foa®8,34,57 near  stydies[61] showed that resistance against rollimgodeled
the rcp fraction. A slow relaxation time and the increase OfaS an elastic Spring y|e|d|ng rotational resistah'cm, where
the correlation length between force chains is found near I, is the rotational stiffness, anfl is the relative rotation by
This behavior indicates that the physics of granular materialgo|ling) might be relevant for modeling shear bands. The
might be closely related to other complex systems undergorelevancy of rotational resistance to static packings has not
ing jamming as proposed recenfly8] such as glasses, col- peen determined yet, and therefore we do not include it in

B. Jamming and melting

loids, foams, and emulsions. our studies. It should be noted, however, that the simulations
consider resistance against shear given by the elastic tangen-
C. Conclusions tial force of Mindlin.

Our MD simulations are in good agreement with the
available_ experim_ental data on the_ pressure dependence of APPENDIX B: DAMPING
the elastic moduli of granular packings. They also serve to
clarify the deficiencies of EMT. Grain relaxation after an  Recently it has been shown that in order to incorporate the
infinitesimal affine strain transformation is an essential com<dissipation law leading to inelasticity at the grain-grain con-
ponent of the sheaibut not the bullk modulus. This relax- tact consistent with the Hertz contact law, a nonlinear force
ation is not taken into account in the EMT. dependency on the relative velocity of the grains in contact
Clearly, there is a need for alternative theories to describéas to be incorporated into the contact Ig&2].
granular packings. Recent work on stress transmission in This dissipative part of the normal force has been deter-
minimally connected networks may provide an alternativemined recently by Brilliantowt al. [62] as
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FgISS: gAkan/Zé-I/ZS’ (Bl) e |

where A is a relaxation time that depends on the viscous
properties of the grain material, and it can be uniquely deter- 22000 |
mined from experimental measurements of the coefficient of 2.
restitution for spherical bead88,63,64. ]

In our studies, we are not interested in the way the system
approaches the equilibrium state, but only in the final state S |
which is supposed to be independent on the type of damping
used. Thus we use the more efficient global damping and
linear contact damping described in Sec. Il E. However, for 18000 e e o e m
dynamical studies a damping term as in Eg1) should be Pressure p [Pa.m]
considered as well.

35000
APPENDIX C: MODEL OF INTERACTION BETWEEN 20000
DROPLETS /

In the case of emulsions, interdroplet forces are not given 25000 } //’ -
in terms of bulk elasticity as in Hertz theory. Instead, forces = - e
are given by the principles of interfacial mechanics without 2 owl ‘_-_—:___-'F” Wi ¢
considering shear forcg83-35,6%. For small deformations e
with respect to the droplet surface area, the energy of the " ol
applied stress is presumed to be stored in the deformation of el e
the surface. Hence, at the microscopic level, two spherical
droplets in contact interact with a normal repulsive force 10000, °r o T o s o
F,~RvyA. This is the so-called Princen modéb], whereA Pressure p [Pa.m]

is the area of deformation, andis the interfacial tension of
the droplets, an® is the geometric mean of the radii of the
undeformed droplets. Since the area of deformation is pr
portional to overlapé, then the interdroplet interaction is
Fa~ ¢

There have been more detailed numerical simulati88s
to improve on this model and allow for anharmonicity in the
droplet response by also taking into consideration the numAt should be smaller than 1®s. Thus in order to perform a
ber of contacts by which the droplet is confined. Typically simulation over one second, more thar® MD steps are
these improved models lead to a force law for small deforneeded, which is obviously a very intensive computation. In
mations of the fornF,= AP, whereA is the area of deforma- this case, it is customary to increase the density or decrease
tion and b is a coordination number dependent exponenthe rigidity of the particles to allow for a larger time step to
ranging from 1(Princen modelto 3/2 (Hertz mode) (see integrate the equations of motion over realistic periods of
also Ref.[40)). time. If the shear modulus of the grains in decreased, then it
should be checked that the resulting stresses are several order
of magnitude smaller thapg, thus ensuring the condition of
a nearly rigid system even though, is taken smaller to

The time step is usually chosen much smaller than th@btain larger time steps.
collision time. However, since each contact is enduring, the
collision time is extremely large and other conditions must
be used. Besides, the collision time for Hertz spheres de-
pends on the relative velocities of the particle, thus it does Here we show the results for the bulk and shear modulus
not defined a fixed time scal&]. as a function of the pressure for a two-dimensional pack of

We choose the time step to be a fraction of the time that ispherical particles interacting via Hertz-Mindlin forcese
takes for a sound wave to propagate on the grain. MoreoveFig. 13. The 2D simulations are done with spherical Hertz-
the quasistatic approximation used to calculate the Hert#indlin balls constrained to move in a plaf@g]. Thus the
force is valid only when the relative velocities of the par- interparticle force is that of the 3D case. Our system is not
ticles is smaller than the speed of sound in the grgf®.  the same as a packing of disks in two dimensions since the
Thus the characteristic time t@zR\s"pg/,ug. Typically, one latter has a different interaction law between particles. Our
chooses a time interval much smaller than the characteristiesults are analogous to the three-dimensional case shown in
time, thenAtzan\«““pg/,ug with a<1. Typical values for glass Fig. 5. All the conclusions regarding the moduli obtained for
beads arep=2600 Kg/n, tg=29 GPa,R=0.1 mm. Then three dimensions are valid in this case as well.

FIG. 13. Bulk and shear moduli for a 2D packing normalized to
091’3, EMT, and corrected EMT taking into account the pressure
dependence oZ(p) from Fig. 3c) as well as¢(p) [see Eqs(EL)
and(E2)].

APPENDIX D: TIME STEP

APPENDIX E: RESULTS IN TWO DIMENSIONS
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The scaling of the coordination number is similar to the

3D case:

(E1)

p n‘>0.2&7)

Z2(p)=Z.+| ———
P °+(18KPa

with Z.~4.
For the volume fraction we obtain

PHYSICAL REVIEW E 70, 061302(2004)

p ’T>O.4(l)

32 MPa

with a critical value of¢.=~ 0.835, which is the rcp limit in
two dimensions. This latter exponent is in disagreement with
a mean field prediction based on the contact law, which
would imply an exponent 2/Bee discussion after E(BO) ].
However, we notice the large error bar of this result since we
have only five data points. We refer to Re40] for a more
systematic study of this problem.
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