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Experiments on isotropic compression of a granular assembly of spheres show that the shear and bulk
moduli vary with the confining pressure faster than the 1/3 power law predicted by Hertz-Mindlin effective
medium theories of contact elasticity. Moreover, the ratio between the moduli is found to be larger than the
prediction of the elastic theory by a constant value. The understanding of these discrepancies has been a
long-standing question in the field of granular matter. Here we perform a test of the applicability of elasticity
theory to granular materials. We perform sound propagation experiments, numerical simulations, and theoret-
ical studies to understand the elastic response of a deforming granular assembly of soft spheres under isotropic
loading. Our results for the behavior of the elastic moduli of the system agree very well with experiments. We
show that the elasticity partially describes the experimental and numerical results for a system under compres-
sional loads. However, it drastically fails for systems under shear perturbations, particularly for packings
without tangential forces and friction. Our work indicates that a correct treatment should include not only the
purely elastic response but also collective relaxation mechanisms related to structural disorder and nonaffine
motion of grains.
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I. INTRODUCTION AND OBJECTIVES

The acoustic properties of granular porous materials con-
fined by an external stress can be extremely nonlinear as
compared to continuum elastic solids[1–4]. Many industrial
applications, such as the optimization of well location in an
oil reservoir, depend crucially on the correct interpretation of
nonlinear acoustic effects in granular materials, as exempli-
fied by the large variation of the sound speeds or the elastic
constants of the granular formation as a function of the ex-
ternal stress[5,6].

Important insight into this problem comes first from the
Hertz-Mindlin contact theory to model the intergrain forces
[7,8]. In this case, nonlinearity arises from the increase with
the external stress of the contact area between two spherical
grains. Conventional theories describing this problem in the
framework of elasticity of continuum media[8] consider a
uniform strain at all scales, and the displacement field of the
grains is affine with the macroscopic deformation(the affine
approximation). Here, one computes the stresses in terms of
the strains by considering the disordered medium as an ef-
fective medium that exerts a mean-field force(as given by
contact Hertzian theory) on a single representative grain.
This approximation is usually referred to as the effective
medium theory(EMT) [9–12].

As shown in a short letter[13] and the studies of other
groups[2], the EMT does not successfully explain the me-
chanical properties of cohesionless granular assemblies. The
main prediction of the theory is the scaling of the bulk modu-
lus K and shear modulusm with the pressurep as K,m
,p1/3. However, there is a large volume of experiments for
irregular sand grains as well as spherical glass beads which
show anomalous scaling characterized by exponents varying
between 1/3 and 1/2(for a comprehensive review see God-
dard [2] and for a review in the geotechnical literature see

Ref. [14]). Some studies have suggested that a,p1/2 scaling
is more appropriate for describing the nonlinear variation of
the moduli[2].

Here we extend the results of Ref.[13] and investigate the
applicability of elasticity theory to granular matter by means
of experiments, computer simulations, and analytical calcu-
lations. We first develop a series of acoustic experiments to
characterize the nonlinear elastic behavior of noncohesive
dry granular materials under a wide range of external pres-
sures. From this experimental study we conclude that a mi-
croscopic study is needed in order to elucidate the deficien-
cies of existing granular theories. Then we perform a
molecular dynamics(MD) simulation to give microscopic
insight into the relaxation mechanism of granular materials.
Finally, we offer a simple theory of relaxation going beyond
the effective medium approximation of elasticity.

We calculate the elastic moduli,K andm, of a disordered
array of elastofrictional Hertz-Mindlin spherical grains. Nu-
merical simulations resolve the question as to whether the
problem lies in the treatment of intergrain contact or with the
EMT. We find agreement between our simulations and the
experiments, thus confirming the validity of the Hertz-
Mindlin contact theory to glass bead aggregates composed of
frictional particles.

Regarding the anomalous pressure dependence of the
moduli, we find that there are several nonlinearities which
preclude the proper definition of a scaling behavior as a func-
tion of pressure. We find a regime at low pressure where the
coordination number and the volume fraction do not change
much from their minimal values. In this regime thep1/3 scal-
ing is approximately valid. However, for pressures larger
than 10 MPa the increase of the coordination number and
volume fraction induces other nonlinearities and therefore no
simple scaling behavior can be defined.
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In reality around 10 MPa there is crossover from ap1/3 to
a p5/9 scaling at larger pressures. Thus we conclude that the
scattering in the experimental values of the pressure expo-
nent might be explained by the fact that the exponent is
actually changing continuously from 1/3 to 5/9. This is es-
pecially true in the regime where the experiments are usually
done, near the crossover region at 10 MPa. Similar conclu-
sions have been reached by Luding[15] who also found that
EMT needs to take into account the coordination number and
its dependence on pressure.

Our most important results relate to the effect of friction
and stress relaxation on the behavior of the elastic constants.
First, we find that the elastic formulation gives a reasonable
description for the response of the system to compressional
loads, i.e., the bulk modulus is reasonably well defined with
the simple EMT. However, our simulations establish that the
EMT is inadequate in describing the response of the material
under shear perturbations.

The numerical simulations indicate that EMT fails be-
cause it does not properly allow the grains to relax from the
affine deformation imposed by the external boundary. The
affine assumption is that, under an infinitesimal symmetric
macroscopic deformation, each grain translates according to
the direction of the macroscopic strain, and it does not rotate.
Moreover, no further relaxation mechanism is allowed. Such
an homogeneous strain field is consistent with the local force
balance of grains only in an ordered system. For disordered
packings an inhomogeneous strain develops at the local
level. After the application of an affine strain the particles
experience an unbalanced force since they are not, in gen-
eral, in a symmetric environment. Consequently, the particles
will move to a position different to that predicted by the
affine approximation, so that the net force on each particle is
zero. Similarly for torques and rotations.

Here we show that the assumption of affinity is approxi-
mately valid for the bulk modulus and seriously flawed for
the shear modulus. For this reason, the EMT prediction dif-
fers significantly from the experimental value. Thus the prin-
cipal source of deviation from EMT is the breakdown of the
uniform strain assumption.

To quantify the breakdown of EMT for the shear modulus
we focus our studies to two cases: frictionless grains inter-
acting via only normal forces(this system is said to be path
independent and it is thought to describe compressible foams
and emulsions) and systems with elastic tangential forces
and Coulomb frictional forces(these systems are path depen-
dent and describe dry granular materials).

The largest disagreement between theory and simulations
is found for frictionless systems; the difference is more pro-
nounced at low confining stress where we show that the sys-
tem is in a state of marginal rigidity at a minimal mean
coordination number equal to 6 in three dimensions(or 4 in
two dimensions). We find that after the application of an
external shear strain there is a nearly complete relaxation of
the system to the applied shear; a result that cannot be cap-
tured under the framework of elasticity. We show that a new
scaling behavior with pressure might describe the data for
frictionless particles better:mspd,p2/3 asp→0.

We interpret this result in the framework of critical phe-
nomena: asp→0 the system approaches a critical point at a

mean coordination numberZc=2D in D dimensions, and a
volume fraction of random close packingfc<0.64. This
point describes a rigidity threshold state or a critical state of
the packing as defined by Alexander[16] and it is where the
system becomes “isostatic”[17–19]. The elastic moduli van-
ish as a power law of the pressure or volume fraction. For
any finite pressure rigidity is achieved, sinceZ.Zc. Near the
rigidity threshold the reference packing structure has a power
law dependence on the pressure, modifying the scaling of
mspd predicted by the Hertz theory.

When friction and tangential elasticity is restored at the
intergrain contacts, the agreement between theory and simu-
lations (and in this case experiments) improves with respect
to the frictionless case. This is because the existence of tan-
gential restoring forces reduces the extent to which the grains
relax from the assumed affine configuration. Thus the EMT
provides a better agreement with simulations and with ex-
periments for frictional grains than for frictionless grains, but
serious disagreements still persist as we shall demonstrate.

We conclude that in order to develop a better understand-
ing of the problem, one must abandon the purely elastic
framework and consider granular matter as a full viscoelastic
body. Collective relaxation effects can account for the dis-
crepancy in the shear modulus in comparison with the elastic
prediction: the corrections increase dramatically in the case
of loose materials and for frictionless packings. A theory of
single-particle relaxation is offered as a first step in this di-
rection. We also discuss our results in the framework of re-
cent theories of marginal rigidity, jamming, melting, and
fragile matter.

Applications. Part of the motivation for this research de-
rives from the fact that acoustics and nonlinear elastic log-
ging methods are at the forefront of the evolving technology
to help plan and optimize well location in oil exploration
[20]. In order to position a well correctly, the knowledge of
the stress distribution around the bore hole is essential. Me-
chanical properties of the granular formation obtained from
sonic logging can help predict formation strength, while
stress magnitude derived from sonic measurements helps in
predicting sanding problems in unconsolidated formations.
Acoustic measurements in granular materials provide the
natural way to understand the distribution of stress around
the bore hole.

Quite apart from the relevance to bore-hole logging,
within the field of seismic tomography there is a growing
interest in developing techniques to generate images of dis-
sipation, along with the more traditional images of imped-
ance contrast. This extended seismic tomography would have
impact, not only on the understanding of hydrocarbon reser-
voirs but also, e.g., on techniques to monitor the migration of
ground water pollutants. This work represents an attempt to
understand some of the mechanisms of attenuation as well as
the stress dependence of sound velocities in granular materi-
als.

The outline of the paper is as follows. Section II reviews
the background of the problem of effective medium theories
and numerical approaches: MD simulations and intergrain
forces for granular materials, compressed emulsions, and
foams. Section III describes the experiments on sound propa-
gation. Section IV describes the numerical results and Sec. V
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the theoretical results. We conclude in Sec. VI with a final
outlook.

II. BACKGROUND

The problem of elastic properties of granular materials
has been treated by many researchers since the pioneering
work of Mindlin in the 1950s[2,9,21–30]. However, a gen-
eral solution to this problem is still lacking.

In a typical experiment, a set of cohesionless glass beads
is confined at a hydrostatic stressp, and the compressional
sound speedvp and the shear sound speedvs are measured as
functions of stress(see, for instance, Domenico[21], Yin
[22], and Refs.[2,23,26]). The P-wave andS-wave speeds
are related to the elastic constants of the material in the long-
wavelength limit:

vp =ÎK + 4/3m

r
, s1d

vs =Îm

r
, s2d

wherer is the mass density of the system.

A. Contact mechanics

In his seminal paper “On the Contact of Elastic Solids,”
H. Hertz [7,8] used linear elasticity of continuum media to
calculate the normal force of two perfectly elastic spheres
pressed into contact considering no attraction or stickiness.
Hertz showed that two spherical grains in contact with radii
R1 andR2 interact with a normal repulsive force

Fn =
2

3
knR

1/2j3/2, s3d

where R=2R1R2/ sR1+R2d, the normal overlap isj=s1/
2dfsR1+R2d− uxW1−xW2ug.0, andxW1, xW2 are the positions of the
grain centers. The normal force acts only in compression,
Fn=0 whenj,0. The effective stiffnesskn=4mg/ s1−ngd is
defined in terms of the shear modulus of the grainsmg and
the Poisson rationg of the material from which the grains are
made(typically mg=29 GPa andng=0.2, for spherical glass
beads).

The situation in the presence of a tangential forceFt is
more complicated. In the case of spheres under oblique load-
ing, the tangential contact force was calculated by Mindlin
[31]. A general loading history can be described by the in-
cremental change in the tangential forceDFt and in the nor-
mal forceDFn. For the special case where the partial incre-
ments do not involve microslip at the contact surface(i.e.,
uDFtu,m fDFn, wherem f is the kinematic friction coefficient
between the spheres, typicallym f =0.3) Mindlin [31] showed
that the tangential force is

DFt = ktsRjd1/2Ds, s4d

wherekt=8mg/ s2−ngd, and the variables is defined such that
the relative shear displacement between the two grain centers

is 2s. This is called the Mindlin “no-slip” solution(see Ap-
pendix A for a more general solution).

The incremental form Eq.(4) is needed since the numeri-
cal value of the tangential force depends upon the trajectory
taken in the spacesj ,sd; see Ref.[12] for details. The tan-
gential force is obtained by integrating over the path taken
by the spheres in contact subject to the initial conditions:
Fn=0, Ft=0 at j=0,s=0, yielding

Ft =E
path

ktsRjd1/2ds. s5d

Thus a granular system with tangential elastic forces is
said to be path dependent. By path dependency we mean that
the work done in deforming the system depends upon
whether one first compresses the system, then shears it, or
first shears it then compresses. The results depend upon the
path taken and not just the instantaneous final state. On the
other hand, a system of spheres interacting only via normal
forces, Eq.(3), is said to be path independent, and the work
does not depend on the way the strain is applied.

As the shear displacement increases, the elastic tangential
force Ft reaches its limiting value given by Amontons’ law
for no adhesion,Ftøm fFn. Amontons’ law(a special case of
Coulomb’s law) adds a second source of path dependency as
well as hysteresis to the problem.

B. Effective medium theories (EMT) of granular elasticity

The basic idea of elastic theories relevant to our study is
that the macroscopic work done in deforming the system is
set equal to the sum of the work done on each grain-grain
contact and that the latter is replaced by a suitable average
[10–12]. These theories are usually referred to as the effec-
tive medium theory(EMT) and are based on Hertz-Mindlin
contact mechanics. In the case of an isotropic deformable
solid (for simplicity we describe the isotropic case), the
strain energy density per unit volume as a function of the
strainei j is

Usei jd = U0 − pell + meSei j −
1

3
di jellD2

+
1

2
Keselld2 + Osei j

3d.

s6d

This equation is equivalent to the expression

si j = Keelldi j + 2meSei j −
1

3
di jellD , s7d

which determines the stress tensorsi j in terms of the strain
tensor for an isotropic body[8]. Here

ei j = 1/2s] ui/] xj + ] uj/] xid, s8d

and the deviationsui =xi −Ri of the positions of theN par-
ticles in the system,{x1, . . . ,xN}, are measured from a suit-
able rigid reference state

ˆR‰ = ˆR1, . . . ,RN‰, s9d

around which one can expand consistently. This reference
state is straightforward for simple periodic systems. How-
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ever, it is assumed that this expansion is also possible for
amorphous solids with reference states which are random,
like in a packing of grains(see Alexander[16] for extensive
discussions). The subscript inKe and me denotes that the
values of the moduli are calculated considering granular ma-
terials as purely elastic solids. There are two assumptions
inherent to the elastic EMT:

• All the spheres are statistically the same, and it is as-
sumed that there is an isotropic distribution of contacts
around a given sphere.

• An affine approximation is used, i.e., the spheres at po-
sition xj are moved a distancedui in a time intervaldt ac-
cording to the macroscopic strain rateėi j by

dui = ėi j xjdt. s10d

The grains are always at equilibrium due to the assumption
of an isotropic distribution of contacts, and further relaxation
is not required. This sort of mean field theory is analogous to
a simple average of nonlinear spring constants.

It is important to notice that a definition of uniform strain
field is possible only under the mean field approximation.
This assumption is also trivially correct for ordered packings.
However, for disordered systems, the affine approximation is
inconsistent with the local equilibrium of grains[32]. We
will come back to this crucial point later on.

With the above assumptions, the elastic energy Eq.(6) is
set equal to a suitable average over the contacts, viz.

U =
1

V o
contact

E F ·du <
Zf

V0
KE F ·duL , s11d

with F ·du=Fndj+Ft ·ds, Z is the average coordination num-
ber defined as the average number of contacts per particle,f
is the volume fraction of the sample, andV0 is the volume of
a single grain. The EMT predictions for the bulk and shear
modulus for an isotropic system compressed at pressurep
are as follows.

We distinguish between two different models:
(i) Path-independent models, kt=0, frictionless grains:

We consider that there is perfect slippage at the intergrain
contact. This corresponds toFt=0, only normal forces be-
tween the particles. This case corresponds to path-
independent forces, and allows the use of an energy density
function Eq. (6) which depends only on the instantaneous
position of the particles. This case could be considered con-
servative since the total work on a closed path is zero. A
system of frictionless spherical particles could be thought of
as a model of compressed emulsions and foams which are
usually modeled as viscoelastic spheres without tangential
forces[33–35] (see Appendix C).

For the case of frictionless grains one finds

Kespd =
kn

12p
sfZd2/3S6pp

kn
D1/3

, s12d

mespd =
kn

20p
sfZd2/3 S6pp

kn
D1/3

. s13d

(ii ) Path-dependent models, ktÞ0, frictional grains: In
this case tangential elastic forces are taken into consider-

ation. In principle the energy functional(6) now depends on
the path. However, it has been shown that the second order
elastic constants are still path independent under the frame-
work of EMT, while path dependency appears only in the
third order elastic constants[12].

The bulk modulus is not affected by the introduction of
tangential forces, and Eq.(12) is still valid in this case. How-
ever, the shear modulus is modified according to

mespd =
kn + s3/2dkt

20p
sfZd2/3S6pp

kn
D1/3

. s14d

The above results have been obtained by a number of
authors using different methods and are valid in three dimen-
sions[10–12]. It should be noted that the above results are
obtained for a system of infinitely rough spheres, i.e., when
m f →`. Thus there is no sliding, and Coulomb friction is not
considered, although there is a tangential elastic restoring
force as given by Eq.(4). See Appendix A for further dis-
cussion.

The p1/3 dependence in Eqs.(12)–(14) is a direct conse-
quence of the scaling of the normal Hertz force on the de-
formation. Since

p , Fn , j3/2 , e3/2, s15d

we expect

me , Ke ,
] p

] e
, e1/2 , p1/3. s16d

We note that a system of linear springs,Fn,j, would
give rise to elastic constants which are independent of pres-
sure, as in the linear elasticity theory.

C. Discrepancies between theory and experiments

It was found experimentally that the shear and bulk
moduli of an assembly of spherical grains vary with the con-
fining stressp faster than thep1/3 power law predicted by
Eqs.(12)–(14) [2]. Another way of seeing the breakdown of
the elastic theory is to focus on the ratioK /m. According to
Eqs.(12) and (14) for frictional grains

Ke

me
=

5s2 − ngd
3s5 – 4ngd

, s17d

independent of stress, a value which depends only on the
Poisson ratio of the bead material. The experiments give
K /m<1.1–1.3 [21,22]. EMT predicts Ke/me=0.71, if we
takeng=0.2 for the Poisson ratio of glass.(The EMT predic-
tion is rather insensitive to variations ofng; Ke/me
=0.71±0.04 forng=0.2±0.1.) Conversely, a valueng.1.2
would be needed in order to fit the experimentalK /m, clearly
violating the upper thermodynamic limit ofngø1/2 [8].

Another quantity of interest is the effective Poisson ratio
of the packn. According to EMT,ne is again independent of
pressure and given only in terms of the Poisson’s ratio of the
grains:

ne=
def Ke − 2/3me

2sKe − 1/3med
=

ng

2s5 – 3ngd
. s18d
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Thus for typical glass beadssng=0.2d we find a predicted
value of ne=0.02 which is one order of magnitude smaller
than typical experimental valuesn<0.28 [21]; another seri-
ous disagreement.

The origin of the above discrepancies has not been clear:
it could be due to the breakdown of the Hertz-Mindlin force
law at each grain contact, or it could be associated with the
breakdown of the elasticity theory applied to granular sys-
tems. de Gennes[27] proposed that a thin shell of oxide
layer would give a faster growth with stress of the elastic
moduli of the system, which may explain the behavior for
metallic beads. Goddard[2] proposed that sharp angularities
of the grains(for instance sand grains) may modify the con-
tact force law between grains, giving rise to a different stress
dependence. Other authors[2,28] have suggested that the
increasing number of contacts with stress may be the reason
for the discrepancies in the stress dependence of the moduli.
Jenkinset al. [28] measured the elastic moduli using numeri-
cal simulations for a single pressure and concluded that EMT
does not correctly describe the shear modulus but it describes
the bulk modulus fairly well. Other experimental work done
by Liu and Nagel[25] and Jiaet al. [26] concentrated on the
role played by force chains in sound propagation. Different
approaches for one dimensional elastic chains have also been
applied to wave propagation in granular media[29,30].

D. Linear viscoelastic constitutive models

In order to understand our results it is important to gen-
eralize the elastic concepts introduced above to the full vis-
coelastic response. In linear viscoelasticity[36], the current
state of stress specified by the stress tensorsi j is determined
by the past history via a linear constitutive equation

si jstd =E
−`

t

Gijklst − t8dėklst8ddt8, s19d

whereėkl=]ekl /]t is the strain rate, andGijklstd is called the
relaxation modulus tensor.

For an isotropic linear viscoelastic material, the relaxation
modulus tensor has only two independent components. These
are the shear relaxation modulusGstd and the bulk relaxation
modulusKstd characterizing the response to shearė12 and
bulk deformationėii . The relaxation modulusGstd and Kstd
are conceptualized as the time-dependent analogs of the
shearme and bulk modulusKe in elasticity theory.

In this study we will concentrate on the stress relaxation
after a sudden strain imposed via a simple shear, a pure
shear, or a uniaxial compression. For example, a shear strain
is applied instantaneously, att=0, from its initial value of
zero to a final, constant valuee12. For this situation we have
ė12std=e12dstd. Equation(19) reduces to

s12std = e12Gstd. s20d

Therefore, this strain protocol immediately yields complete
information on the response functionGstd [shorthand for
G1212std here] simply by measurings12std. This is a strain
protocol which is particularly simple to implement in our
MD simulations.

For a perfectly elastic solid the relaxation modulus is in-
dependent of time,Gstd=G=constant, and one can define the
shear modulus of the solid as

me=
def

s12/e12 = G. s21d

We will show that the instantaneous response of the vis-
coelastic granular material,Gst=0d, represents the shear
modulusme as calculated by the effective medium theories of
continuum elasticity.

For a Newtonian liquidGstd=hdstd, whereh is the vis-
cosity. For a viscoelastic liquid,Gstd approaches zero as
t→`. For a viscoelastic solid, structural relaxation and elas-
ticity lead to a finite modulus ast→`:

m = Gst → `d. s22d

A similar analysis can be performed for the bulk modulus
Kstd defined as

siistd = 3eiiKstd s23d

to obtainKs0d=Ke and

K = Kst → `d. s24d

Equations(22) and(24) will be used to calculate the moduli
in the simulations.

E. Molecular dynamics simulations

In MD simulations of granular matter the net force and
moment on each grain depend on the choice of intergrain
contact laws[37,38]. Here, we follow the discrete element
method(DEM) developed by Cundall and Strack[37] and
solve Newton’s equations for an assembly composed of soft
elastofrictional spheres interacting via Hertz-Mindlin contact
forces and Coulomb friction as described in Sec. II A[7]. We
employ a time-stepping, finite-difference approach to solve
the Newtonian equations of motion simultaneously for every
grain in the system:

F = mẍ, s25d

M = Iü, s26d

whereF and M are the net force and moment acting on a
given grain,m andI are the mass and moment of inertia, and

ẍ andü are the linear and angular accelerations of the grain,
respectively.

The numerical solution of Eqs.(25) and(26) are obtained
by integration, assuming constant velocities and accelera-
tions for a given time step: linear and angular velocities are
determined from the knowledge of the force and torque, and
grain displacements and rotations at the next time step are
calculated from the average velocities. Grain motions can be
initiated by gravitational forces, by external forces prescribed
by stress or strain rate boundary conditions, and by forces
resolved at intergrain contacts. Strain rates are assumed to be
low, and small time stepsDt are chosen to ensure that the
disturbance of a given grain only propagates to its immediate
neighbors(see Appendix D).
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Viscous damping. Damping of grain motions must be in-
cluded in the calculations to prevent the continuous oscilla-
tion of an elastic system. Although damping is a physical
reality, and physically meaningful mechanisms might well be
incorporated, our concern here is to get the simulations to
equilibrate to the final answer in a reasonable amount of
computer time.

Several damping methods are possible. Global damping
considers the particles immersed in a viscous fluid and is
provided by introducing viscous force terms in Eqs.(25) and
(26). These drag forces are proportional to the absolute ve-
locity and angular velocity of the particles:,−gnẋ, and

,−gtu̇, where theg’s are the global damping coefficient
related to the viscosity of the immersing fluid(which could
be, for instance, air).

Global damping is introduced to guarantee that the system
can reach an equilibrium state with zero velocity at a given
pressure. Its physical significance is being studied at the mo-
ment by experiments and computer simulations. Another
source of damping implies a contact force term acting at
every contact point, proportional to the relative velocities of
the grains. Microscopic contact damping occurs due to the
viscous dissipation of energy in the bulk of the particle ma-
terial when they are deformed and it may also occur if liquid
bridges are formed at the contact points between the par-
ticles. Here, a damping force is added to each contact force,
Eqs. (3) and (5), proportional to the relative normal and

shear velocities,bnj̇ andbtṡ, respectively, withbn andbt the
contact damping coefficients. Typical values of the damping
constant are given in Ref.[38].

In this study we will use global damping for the prepara-
tion of the sample and the calculation of the elastic constants.
This procedure is necessary to achieve the final equilibrium
states which we wish to explore(see Appendix B for a dis-
cussion).

Computation of stress. The macroscopic stress tensor for
point contacts in a volumeV is given by[10–12]

si j =
1

2V o
contacts

sFiRnj + RniFjd, s27d

wheren̂ is the unit vector joining the center of two spheres in
contact.

III. ACOUSTIC EXPERIMENTS

In the simplest experiments, a packing of glass beads is
confined under hydrostatic conditions and the compressional
and shear sound speeds,vp andvs, are measured as functions
of p [2,21–23].

In the long-wavelength limit, the sound speeds are related
to the elastic constants of the aggregate by Eqs.(1) and (2).
Here we perform our own experiments according to standard
sound propagation techniques[21,23].

A. Experimental configuration

We used a set of high quality glass beads of a small
enough diameter to measure an appreciable signal at low

pressure. From the experimental data of Domenico[21], we
expect compressional velocitiesvp,1000 m/s and shear ve-
locities vs,500 m/s at low pressures. We perform ultra-
sonic measurements with pulses of frequencyf =500 kHz,
and we find that the maximum size of the beads should be
R!vs/ s2fd. Then, we choose a set of glass beads of diameter
45 mm in order to reach the desired low pressures.

The glass beads were cleaned and dried to avoid any ag-
glomeration (electrostatic forces or moisture). The glass
beads were then deposited into a flexible container(Tygon
sleeve) of 3 cm height and 2.5 cm radius. Transducers and a
pair of linear variable differential transformers(LVDT, for
measurement of displacement) were placed at the top and
bottom of the flexible membrane(see Fig. 1).

Before starting the measurements, a series of tapping and
vibrations were applied to the container in order to let the
grains settle into the densest possible packing. Our goal is to
establish the sample in the reversible state described by, e.g.,
Fig. 2 of Nowak,et al. [39]. The entire system was then put
into a pressure vessel filled with oil(see Fig. 1). We then
applied confining pressures ranging from 0 to 140 Mpa. The
pressure was cyclically applied several times until the system
exhibited minimal hysteresis. At this point shear and com-
pressional waves were propagated by applying pulses. The
sound speeds and corresponding moduli were obtained by
measuring the arrival time from “head to head” of the trans-
ducers for the two sound wave types.

B. Acoustic measurements

The results we obtain are plotted in Fig. 2 and they com-
pare well with the available data of Domenico[21] for the
range 0–40 MPa. There remains a hysteresis component be-
tween the cycle upwards and downwards in pressure which
is representative of the packed system. A more detailed com-
parison with theory and simulations is done in Figs. 4 and 5,
below.

Because of the deformation of the glass beads the height
of the system decreases with the increasing pressure. In order
to obtain the correct velocities from the arrival time of the
signal, we accurately measure the displacement of the trans-
ducers as the pressure is increased with a pair of LVDT’s. In
order to avoid fracture of the particles due to the external

FIG. 1. Container and transducers-LVDT apparatus used in the
sound propagation experiments.
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pressure we use small particle sizes to reduce the intensity of
the contact forces. To get a qualitative idea of the presence of
crushing within the system we observe the sample under a
microscope after the experiments. We find that crushing oc-
curs only in a very small fraction of the beads. When the
experiment was repeated with larger beads of diameter
0.3 mm many particles appeared to be crushed after applying
pressures of 140 MPa. Moreover, during this test there was a
strong acoustic emission and a severe inflection in the sound
speeds could be noticed as we increased the pressure during
the first cycle upwards due to the crushing of the beads. For
the beads of size 45mm, no inflection is observed and no
acoustic emission is heard during the experiment.

IV. NUMERICAL SIMULATIONS

We perform MD simulations of a system of 10 000
spherical particles in a periodically repeated cubic cell of
approximately 4-mm sides. The particles interact via Hertz-
Mindlin contact forces and we choose typical values for
glass beads formg=29 GPa andng=0.2 for a close compari-
son with experiments. We assume a distribution of grain radii
in which R1=0.105 mm for half the grains andR2
=0.095 mm for the other half. Our results are quite insensi-
tive to the choice of the size distribution. We include viscous
damping terms to allow the system to relax toward static
equilibrium as discussed in Sec. II E.

The general scheme of the simulations is as follows: The
simulations begin with a gas of 10 000 grains distributed at
random positions inside the cubic cell. We first apply a com-
pression protocol so that a dense random packing is gener-
ated corresponding to a predetermined value of the pressure.
Then, an incremental infinitesimal compression or shear is
applied to the unit cell and the change in stress is computed,
once the system re-equilibrates. Thus we obtain the bulk and
shear moduli for the system at each confining pressure.

A. Reference state: Numerical protocol

One of the critical issues in this study is how to obtain a
proper rigid frame of reference Eq.(9), {R} , from where we

could calculate the elastic moduli. Our calculations begin
with a numerical protocol designed to mimic the experimen-
tal procedure used to prepare dense packed granular materi-
als at a given confining pressure. In the experiments, the
initial bead pack is subjected to mechanical tapping and ul-
trasonic vibration in order to increase the solid phase volume
fraction, as discussed in the previous section.

During the numerical preparation stages we turn off the
transverse force between the grainsskt=0d; because there are
no transverse forces, the grains slip without resistance and
the system reaches the high volume fractions found experi-
mentally during the initial compression process. We found
that by preparing the system with frictional and elastic tan-
gential forces, the system reaches states of lower volume
fraction. A more complete study of this effect will be pre-
sented in an upcoming paper[40]. In the following calcula-
tion we concentrate on the preparation without friction, so
that we can obtain the most compact states possible, mim-
icking our experimental procedure. We then restore the tan-
gential Mindlin force and friction when we calculate the
elastic constants.

Starting with a set of noncontacting particles, we first ap-
ply a slow compression to bring the particles closer until a
specified value of the pressure and coordination number is
attained. This initial compression is specified by the dashed
lines in Fig. 3(a). If the compression is stopped just before
reaching a volume fraction of random close packing[speci-
fied as Point A in Fig. 3(a)] and the system is allowed to
relax, then system will relax to zero pressure and zero coor-
dination number, since it cannot equilibrate below the maxi-
mum close packing fraction. This is indicated in Fig. 3(a) as
the decrease of the coordination number and pressure to-
wards zero. The compression is then continued to a point
above the critical packing fraction at a target pressurept. The
target pressure is maintained with a “servo” mechanism[37]
which constantly adjusts the applied strain rateė until the
system reaches equilibrium atpt according to the following
prescription:

ė = gsp − ptd, s28d

wherep is the actual pressure of the system andg is a gain
factor which is tuned to achieve equilibrium at every given
pressure in an optimal way.

B. Coordination number

The above protocol is repeated for different target pres-
sures and we obtain the average coordination numberZ of
these equilibrium states as a function of the pressure, as seen
in Fig. 3(a). Several important points can be seen from this
plot. First, the average coordination number increases with
the pressure as expected. Second, we find that the coordina-
tion number of the pack approaches a critical minimal value
close toZc<6 asp→0. At low pressures, compared to the
shear modulus of the beadssp!26 GPad, the system be-
haves more like a pack of rigid balls. At this point the beads
are minimally connected atZc<6, while in two dimensions
(see Appendix E) the same preparation protocol givesZc
<4 [Fig. 3(c)].

FIG. 2. (a) Wave velocities versus pressure obtained in our ex-
periments. Also shown are the results of Domenico[21] for com-
parison. We cycle up and down in pressure to avoid hysteresis.
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Such low coordination numbers can be understood in
terms of simple constraint arguments for a system ofN fric-
tionless rigid particles inD dimensions[16–19]. We need to
determineZN/2 normal forces withDN equations of force
balance. We find a critical coordination number for which the
equations of force balance are soluble asZc=2D. For large
values of the confining pressure more grains are brought into
contact, and the coordination number increases from its
minimal value required for stability; the system is undercon-
strained. Empirically, we find in three dimensions

Zspd = Zc + S p

10 MPa
D0.30s5d

. s29d

The pressure 10 MPa is significant since it determines the
characteristic pressure of the crossover from the minimal co-
ordination number to a larger one.

We also measure the volume fraction as a function of
pressure and find that it approaches a critical value offc
<0.63 in the rigid ball limit asp→0:

fspd = fc + S p

14 GPa
D0.62s6d

. s30d

The value offc=0.63<fRCP corresponds to the volume
fraction at random close packing(rcp): the densest possible
random packing of hard spheres[41–43], since the hard
sphere limit in our system of deformable particles is
achieved when the pressure(deformation) vanishes(rcp is
only achieved asymptotically in our simulations). The expo-
nent 0.62 is consistent with dimensional arguments which
would predict a value inverse of the power law between the
force and displacement in the Hertz law, i.e., a 2/3 exponent.
The exponent in Eq.(29) is determined by the behavior of
the pair distribution function near jamming. These exponents
agree with similar calculations done by O’Hernet al. [44],
and they will de discussed in more detail in Ref.[40].

The low value of Zc is very significant (this number
should be compared, for instance, toZ=12 for a fcc packing)
because at this minimal coordination the equations for the
force distribution can be solved without reference to the state
of strain in the system. This is the isostatic limit[16,17] and
the starting point of recent theories of stress distributions in
granular packs[18,19,45]. Concepts such as fragility and
marginal rigidity depend on the existence of this minimally
connected state. In the conclusions we will come back to
discuss this issue. As previously reported in Refs.[13,46],
Eq. (29) provides a numerical evidence of the existence of
the minimally connected state in frictionless granular packs.
For other numerical work see Ref.[47].

To test the robustness of these results, we have employed
a second protocol in which the system is prepared by com-
pressing to a point beyond the rcp fraction, then letting the
grains relax to equilibrium without the servo mechanism.
The finalZspd curve is essentially identical to the one shown
in Fig. 3(a). For this reason we believe that we have accu-
rately approximated the reversible state of dense random
packing, in the sense discussed by Nowaket al. [39].

It is important to recall that the above results have been
obtained for a system without friction. A similar preparation
protocol for grains with friction gives rise to different pack-
ings with lower coordination number. Similar constraints ar-
guments as explained above giveZc=D+1 for this case. Fig-
ure 3(b) shows Zspd obtained for a system with friction
showing that a minimalZc<4 in three-dimensions may be
approached asymptotically asp→0, although at a slower
rate than in the frictionless case. Is theZc=4 isostatic limit
achieved asp→0? We have given a positive answer to this
question in Ref.[46]. However, recent studies[47] suggest
that this may not be the case. We refer the interested reader
to an upcoming paper on this work[40] for our more recent
results showing that the rate of compression(analogous to
the rate of cooling of a a glass-forming liquid below the glass
transition) plays a significance role in achieving the isostatic
limit in frictional packs. From now on we will concentrate on
the calculation of the elastic properties of granular media

FIG. 3. Coordination number versus pressure obtained in the
simulations.(a) Frictionless packs in three dimensions. The system
becomes isostatic asp→0 andZ.6. (b) Frictional packs in three
dimensions. Is the isostatic limitZc=4 reached asymptotically as
p→0? See Ref.[40] for details.(c) Frictionless packs in two di-
mensions. Here the system is isostatic withZc.4 asp→0.
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using the states depicted in Fig. 3(a) as our starting point. Of
course, we will restorektÞ0 for the calculation of the
moduli.

C. Calculation of elastic moduli with MD

Consider the calculation of the elastic moduli of the sys-
tem as a function of pressure. Beginning with the equilib-
rium states of Fig. 3(a) we first restore the transverse com-
ponent of the contact force by settingktÞ0. We then apply a
small perturbation to the system and measure the resulting
response. We do not expect slippage to occur since we apply
infinitesimal strain perturbations, but since we deal with a
finite system we set the friction coefficientm f to a large value
to avoid sliding at the contacts. The elastic moduli are cal-
culated by applying a given affine infinitesimal strain pertur-
bation De as given by Eq.(10) and then monitoring the re-
sponse of the corresponding stresssstd as a function of time.
After the system equilibrates again ast→`, the moduli are
obtained from Eqs.(22) and (24) as the change in stress
between the final state and the stress before the perturbation
Ds /De. The procedure is repeated forDe→0 to guarantee
that we are testing the linear response regime where the elas-
tic moduli become independent ofDe. Interestingly we find
that the region where the elastic constants are well defined
decreases as the pressure decreases. This is in agreement
with the prediction of the EMT for the third order elastic
constants which are found to diverge as,e−1/2,p−1/3 [12].

The shear modulus is calculated from a simple shear test
sDe12=De21Þ0d as given by Eq.(7),

m =
1

2

Ds12

De12
, s31d

and also from a pure shear test withDe11=−De22:

m =
1

2

sDs22 − Ds11d
sDe22 − De11d

. s32d

We find that the values ofm determined from these two
methods agree with each other, as expected for an isotropic
system.

The bulk modulus is obtained from a uniaxial compres-
sion test along the 1 direction and keeping the strain constant
in the other directionsDe22=De33=0, andDe11Þ0:

K =
Ds11

De11
−

4

3
m. s33d

Here the stresssi j is determined from the measured forces
on the grains Eq.(27) , and the strainei j is determined from
the imposed dimensions of the unit cell. For instance,e11
=DL /L0 whereDL is the infinitesimal change in the 11 di-
rection andL0 is the size of the reference state at the givenp.

The results of our numerical calculations forKspd and
mspd are shown in Fig. 4. These results have been obtained
for packings of 10 000 particles. Calculations done with 432
spheres show similar values indicating that the results are
free of finite size effects. We see that our experimental and
numerical results are in reasonably good agreement. Also
shown are data measured by Domenico[21]. Clearly, the

experimental data are somewhat scattered at low pressure. It
reflects the difficulty of the measurements, especially at the
lowest pressures where there is a significant signal loss. Nev-
ertheless, our calculated results pass through the collection of
available data. It should be noted that the experiments are
compared against the numerical results without resorting to
the use of fitting parameters, since all the constants charac-
terizing the grain material(mg and ng) are known from the
properties of the grains.

D. Breakdown of the EMT: Problems with m

Also shown in Fig. 4 are the EMT predictions Eqs.(12)
and(14) using the same parameters as in the simulations. We
setZ=6 andf=0.64, independent of pressure. At low pres-
sures we see thatK is well described by EMT. At larger
pressures, however, the experimental and numerical values
of K grow faster than thep1/3 law. The situation with the
shear modulus is even less satisfactory. EMT overestimates
mspd at low pressures but, again, underestimates the increase
in mspd with pressure.

To investigate the failure of EMT in predicting the correct
pressure dependence of the moduli, we re-plot the moduli
divided byp1/3 in Fig. 5.

For such a plot, EMT predicts a horizontal straight line
but we see that the numerical and experimental results are
clearly increasing withp. It is tempting to try to fit the data
with another power law. However, we must first include the
power law dependence of the coordination number and the
volume fraction with the pressure as given by Eqs.(29) and
(30). Thus we modify Eqs.(12) and(14) to include the pres-
sure dependenceZspd andfspd (this latter is a much smaller

FIG. 4. Pressure dependence of the elastic moduli,(a) bulk and
(b) shear moduli from MD, our experiments, Domenico experi-
ments, and EMT.
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effect, see below). The corrected EMT is also plotted in Fig.
5 and we see that it predicts the same trend with pressure as
the simulations. The experimental data also seem to be fol-
lowing this trend but more data over a larger pressure range
are clearly needed.

When analyzingKspd, we find that the corrected EMT is
in essentially exact agreement with our numerical simula-
tions and experimental data. Thus we tend to conclude that
the anomalous scaling found in the experiments is be a mea-
surement of a crossover behavior as obtained by combining
Eqs.(12) and (14) with the nonlinearity of Eqs.(29) giving
rise to two distinct scaling regimes:

Kspd , mspd , p1/3, for p ! 10 MPa,

Kspd , mspd , p5/9, for 10 MPa! p ! 14 GPa.

s34d

Here we have not included the pressure dependence of the
volume fraction Eq.(30) since it appears at the very large
pressures above 14 GPa. At these pressures the beads are not
supposed to follow anymore the Hertz law(and they may, in
fact, fracture). Therefore we exclude this regime from our
scaling analysis in Eq.(34).

Since the experiments are usually done near the crossover
pressure of 10 MPa, it holds to reason that they could be
measuring a crossover behavior rather than a true scaling
regime. Moreover, even for pressures larger than 10 MPa the
Hertz contact mechanics approach might fail since the Hertz
theory is based on small perturbations. Thus the true final
scaling regime Eq.(34) might not be accessible experimen-

tally, at least for glass beads and other rigid materials. It
would be interesting to see if such a crossover could be ob-
served in softer materials.

The substitution of Eqs.(29) and (30) into Eqs.(12) and
(14) is something of anad hocprocedure; Eqs.(12) and(14)
were derived under the assumption thatZ and f are stress-
independent quantities. Within the context of the affine as-
sumption, the EMT derivation can be modified to account for
a continuously changing coordination numberZspd. Let us
assume that, in the limit of zero pressure, there is a probabil-
ity distribution Pshd of gap sizesh between each ball and its
neighbors:

Pshd = Zcdshd + a1 + a2h + ¯ , s35d

where Zc=6 represents the coordination number at zero
stress and the rest is a Taylor’s series expansion aroundh
=0. It is straightforward to re-do the derivations leading to
Eqs. (12) and (14) following the prescription in, e.g. Ref.
[12]. The results, expressed in terms of the static compres-
sive strain,e,0, are

p =
fkn

6p
FZcs− ed3/2 +

2

5
sa1Rds− ed5/2 + ¯G , s36d

K =
fkn

12p
FZcs− ed1/2 +

2

3
sa1Rds− ed3/2 + ¯G . s37d

Using a judiciously chosen value ofa1Þ0, and neglectinga2
and all higher-order terms, a cross plot of Eq.(37) against
Eq. (36) mimics the molecular dynamic simulations in Fig.
4. We note, however, that, taken literally, Eq.(35) predicts
Z−Zc~p2/3 for small p, in contrast to Eq.(29).

Since the bulk modulus is approximately described by the
corrected EMT, throughout the rest of the paper we focus on
mspd. In Fig. 5 it is shown that even though the pressure
trend is well described by the corrected EMT, the theory still
overestimates the value of the shear modulus. We will see
later that the overestimation depicted in Fig. 5 becomes enor-
mous when the tangential forces are diminished towards
zero. In this limit, the breakdown of the EMT is clearly es-
tablished.

Another way of seeing the breakdown of EMT is to focus
on the ratioK /m, which is independent of pressure in the
theory Eq.(17) , the simulations, and approximately so in the
experiments, as seen in Fig. 6.(The variation at low pressure
may reflect the difficulty in propagating sound at low con-
fining pressures.) The experiments giveK /m<1.1–1.3. Our
simulations giveK /m<1.05±0.05 in good agreement with
experiments. Notice, however, that the EMT predictsK /m
=0.71, as mentioned earlier. Moreover, the effective Poisson
ratio from simulations,n<0.27, is in excellent agreement
with that of the experimentn<0.28, but greatly differs from
the theoretical predictionne=0.02, Eq.(18).

E. Role of transverse forces and rotations

To understand whym is overestimated by EMT we must
examine the role of transverse forces and rotations in the
relaxation process of the grains. These effects do not play

FIG. 5. Elastic moduli,(a) bulk and(b) shear, normalized top1/3

and corrected EMT taking into account the pressure dependence of
Zspd from Fig. 3(a) as well asfspd.
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any role in the calculation of the bulk modulus. According to
the EMT, the transverse forceFt contributes only to the shear
modulus and not to the bulk modulus[see Eqs.(12)–(14)].
We are therefore motivated to examine the behavior of the
moduli as a function of the strength of the transverse force.
We replace the tangential stiffnesskt in Eq. (4) by akt and
redefine the transverse force as

DFt = a ktsRjd1/2Ds; s38d

a=0 is appropriate for frictionless coupling(perfect slip),
whereasa=1 describes the fully frictional result(perfect
stick) and corresponds to the results described so far. To
quantify the role of the transverse force on the elastic
moduli, we calculateKsad andmsad varying a from 0 to 1,
at a given pressure,p=100 KPa, low enough so that the
changing number of contacts does not play a role.

The results are plotted in Fig. 7(curves labeled MD). To
compare with the theory we plot the prediction of the EMT
Eqs. (12) and (14) in which kt is rescaled byakt (curves
labeled EMT). (The curves labeled MD AM are discussed in
the next subsection.) The simulation confirms thatK is es-
sentially independent of the strength of the tangential force;
both theory and simulations show a flat line in Fig. 7. Sur-
prisingly, the shear modulus is extremely sensitive to the
tangential force and becomes negligible small in the limit of
frictionless particlessa→0d dropping to less than 10% of
the predicted EMT value. We see that the EMT badly fails in
accounting for the vanishing of the shear modulus asa→0.

By contrast the bulk modulus agrees reasonably well with
EMT regardless of whether there was perfect slip or perfect
stick. What is the most serious problem with the elastic
theory? In the next section we will focus on the role of stress
relaxation and the nonaffine motion of grains due to disorder.

First, however, we wish to eliminate a conceptually sim-
pler effect of disorder as the explanation for the behavior of
mspd. In the simulations(and presumably in the experi-
ments), it is not true that each grain has the same number of
contacts. Rather, there is a distribution of contacts ranging
from Z=3 to Z=10 with a peak atZ=6, which is near the

average (Z̄=6.14 at 100 KPa). Thus the local elasticity
moduli can vary widely from one grain to another. There is a
well-developed theory for just such situations[48], which is
also called a “self-consistent effective medium approxima-
tion” (sc-ema). Let Ki and mi be the moduli for spherical
inclusions whose volume fraction isci. The effective elastic
constants for the composite,K* and m* , are determined by
the simultaneous solution of the following coupled equa-
tions:

o
i

ci
K* − Ki

Ki + s4/3dm* = 0 s39d

and

o
i

ci
m* − mi

mi + F* = 0, s40d

where

F* =
m*s9K* + 8m*d
6sK* + 2m*d

. s41d

Effective medium theories of this sort generally work well in
situations in which the disorder is not too great(such as
when there is a log-normal distribution of constituent prop-
erties, or when one is near a percolation threshold). More-
over, the sc-emas have certain desired properties, such as
correct limiting values and lying within upper and lower
bounds. See Ref.[48] for details.

Here we take the view that the system is a composite
consisting of spherical inclusions, each of which has moduli
given by Eqs.(12) and(14). In the case at hand it is useful to
rewrite them in terms of the local value of the compressive
strain, ei ,0, within each inclusion(see Ref.[12] for de-
tails):

Ki =
fkn

12p
Zis− eid3/2, s42d

mi =

fSkn +
3

2
aktD

20p
Zis− eid3/2. s43d

Of course, grains with a large number of contacts,Zi, can
be expected to have a smaller than average compressive
strainei. In order to relateei to the macroscopic straine* , we
recognize that the spirit of the sc-ema is that each spherical
inclusion is surrounded by the host material. Therefore it is a

FIG. 6. RatioK /m for MD, experiments, and EMT(pressure
independent).

FIG. 7. Ksad and msad versusa for a fixed p=100 KPa as
calculated numerically with MD(noted MD), as calculated numeri-
cally using only the affine motion(noted MD AM) and as predicted
by the EMT(noted EMT).
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simple elasticity problem to show that the differential change
in strain within a spherical inclusion is related to the differ-
ential change in macroscopic strain by

dei =
K* + s4/3dm*

Ki + s4/3dm* de* . s44d

We take the distribution of contactshcij from our simulation
at 100 kPa. It is straightforward to solve the system of equa-
tions (39)–(44). The EMT we have been discussing corre-
sponds toZi → kZl andei →e* ; for the casea=0, and using
the same material parameters as before, it may be written as

Ke = 16.2s− e*d3/2, s45d

me = 9.7s− e*d3/2, s46d

where the moduli are expressed in GPa. If, though, the full
distribution of contact numbers is used in the foregoing
analysis the results are

K* = 15.8s− e*d3/2, s47d

m* = 9.5s− e*d3/2. s48d

The point of this exercise is to demonstrate that, although
the packing is obviously disordered, the effect of the disorder
alone is quite negligible as far as the macroscopic elastic
moduli are concerned. Similar results hold fora=1. Each
grain sees, more or less, the same average environment as
any other. In the next section we investigate the effects of
disorder induced relaxation, which, we believe is the under-
lying effect behind the small values ofmspd we are observ-
ing.

F. Role of relaxation and disorder

In the EMT, we saw that if an affine perturbation of the
form (10) is applied to the system, the grains are always at
equilibrium due to the assumption of isotropic distribution of
contacts and further relaxation of the grain is not significant.
The response is then purely elastic.

On the contrary, in the MD simulations(and in the experi-
ments) after the application of an affine perturbation via the
motion of the boundaries and grains, the beads in the imme-
diate neighborhood of each grain move around, relative to
the center grain, in a way which gives rise to a stress relax-
ation associated with these rearrangements of particles.

Figure 8 shows the behavior ofs12std;e12Gstd as per Eq.
(20) for a system atp=100 KPa and witha=0.2 during and
after the application of the affine strain perturbationDe12
which moves all the grains according to the external strain
Eq. (10). We see how the system behaves as a viscoelastic
solid as explained in Sec. II D. When the affine perturbation
is applied, the shear stress increases(from A to B in Fig. 8)
and the grains are far from equilibrium since the system is
disordered. This is the instantaneous elastic response. The
grains then relax towards equilibrium as(from B to C), and
we measure the resulting change in stressDs12 ast→` from
which the modulusm is calculated as in Eq.(22).

For a better understanding of the approximations involved
in the EMT, suppose we repeat the MD calculations now

taking into account only the affine motion of the grains and
ignoring the subsequent relaxation. The resulting values of
the moduli are obtained asmaffine=Ds12

affine/De12 with Ds12
affine

defined in Fig. 8. In Fig. 7 we plot the moduli calculated in
this way as a function ofa for p=100 KPa(curves labeled
MD AM ). The affine moduli are very close to the EMT pre-
dictions: there remains a 10% difference between the EMT
and the MD(affine) which is representative of the disordered
packing which is averaged in the EMT. Thus the difference
between the MD and EMT results for the shear modulus lies
mostly in the nonaffine relaxation of the grains; this differ-
ence is largest when there is no transverse force.

By contrast, grain relaxation after an applied compres-
sional affine perturbation is not particularly significant and
the EMT predictions for the bulk modulus are quite accurate
as seen in Fig. 7.

G. Isostatic limit as a critical point

The surprisingly small values we found form as a→0
raises several questions. We notice thatkn andp are the only
variables with the dimension of pressure in this limit. A scal-
ing argument would lead to

m , knsp/kndh. s49d

The Hertz theory predictsh=1/3, aresult which we find to
be valid at low pressure for frictional grains. Indeed, quite
generally if one assumes that each grain-grain force scales as
Eqs. (3) and (4) and if one assumes the arrangement of the
grains, however disordered that may be, does not change
with pressure then both moduli scale as in Eq.(49) with h
=1/3. This argument specifically presupposes that, e.g., the
average coordination number does not change with pressure.

Since there are no other constants that could reduce the
value of m for a→0 we are lead to believe that a new ex-
ponenth should describe the shear modulus for frictionless
packs. This is an effect which lies outside the standard as-
sumptions of elasticity theory, as indicated above. Sincep
,kn, then h.1/3. To give validity to our hypothesis, we
plot in Fig. 9mspd for a=1 anda=0. We see that a better fit
to the low pressure behavior ofmspd for a=0 is achieved
with h=2/3.Notice that we deliberately try to fit the data at
low pressure to avoid the issue of the increasing coordination
number.

FIG. 8. Relaxation of the shear stresssB→Cd after an motion
affine sA →Bd in the calculation of the shear modulus.
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How can we explain the 2/3 scaling behavior? A possible
answer could be provided by a recent conjecture by Alex-
ander[16] who proposed the following scaling:

m , knAspdsp/kndh, s50d

where the functionAspd is determined by the geometry of
the reference frame of rigidity, Eq.(9), which is determined,
in turn, by the pressure. Assuming that the limitp→0 is
indeed a critical state of rigidity, then we expect

Aspd , pl, s51d

which would explain the anomalous scaling for the friction-
less grains withl=1/3,while for frictional grains we would
havel=0.

H. Microstructure and force chains

The velocity of acoustic signals probes an effective me-
dium which should be homogeneous at length scales larger
than a typical correlation length of the material. Experimen-
tal and numerical work indicates that there is an internal
structure at length scales,10d, whered is the typical size of
the grains: the forces are observed to be localized along
“force chains” carrying most of the loads in the system(see
Fig. 11) [46,49–51]. A question of interest is how such a
microstructure affects the properties of the system at macro-
scopic length scales where the elastic continuum theory is
valid [26].

We want to quantify the relevance of force chains to the
elastic moduli. We calculate the shear modulus as a function
of a subset of forces belonging to the strongest forces in
order to search for the backbone of grains which give rise to
the shear rigidity of the material. Is this backbone deter-
mined by the force chains, or do the interstitial particles play
also a relevant role to determine the rigidity?

In this regard, recent calculations of Radjaiet al. [52]
have shown that the stress ratio between shear and compres-
sion shows a “percolationlike” behavior: the forces larger
than the average are responsible for most of the rigidity of
the material. This was shown to be valid in two dimensions.
Here we follow Ref.[52] and define az network which in-
cludes only forces smaller than a cutoff forcez. Then we
redefine the stress Eq.(27) and compute the shear stress only
for the z network as

s12szd =
1

2V o
uFu,z

sFiRnj + RniFjd, s52d

from which we obtain the shear modulus for thez network as
mszd=Ds12szd /De12 (for z→` we recover our previous re-
sults).

Figure 10 shows the result ofmszd for p=100 KPa and
a=1 and should be compared with Fig. 4 in Ref.[52]. In
contrast with the two-dimensional(2D) results of Ref.[52]
we find no evidence of a bimodal distribution of forces
which would give rise to a percolationlike behavior of the
shear modulus. We see that the shear modulus and the coor-
dination number increase continuously as we increasez.

We also repeat the same calculations for our two-
dimensional packings and find the same result as in three
dimensions, i.e., we find no evidence of a bimodal character
in the behavior of the shear modulus versus the force cutoff.
The fact that we do not see the same behavior in two dimen-
sions as in Ref.[52] might be related to the regularization
scheme used in our MD simulations to handle the frictional
forces which may eliminate the critical behavior found in
Ref. [52]. Radjai et al. used a contact dynamics algorithm
which tackle the nonsmooth character of the interactions
without any regularization schemes.

Figure 11 shows our attempt to visualize force chains in
3D packings(a) without friction under isotropic compres-
sion, (b) with friction under uniaxial compression, and(c) in
2D frictional isotropic packings. Force chains are not promi-
nent in the 3D isotropic frictionless packing. Moreover, the
continuous variation ofmszd obtained for this packing seems
to indicate that all forces are important for the mechanical
response to shear, and not just the larger forces which may be
organized in force chains. However, force chains are promi-
nent in the 3D packing under uniaxial compression and the
2D packing.

V. THEORY: SINGLE PARTICLE RELAXATION

Since the difficulty with the shear modulus is shown to be
due to the relaxation of the particles from the initial uniform
strain approximation, we next perform the simplest investi-
gation that allows for some relaxation. From the simulations,
we know the rest positions of each of the particles, as well as

FIG. 9. Shear modulus versus pressure for frictionalsa=1d and
frictionlesssa=0d particles.

FIG. 10. Behavior of the shear modulus and the coordination
number for thez network. We use the packing at 100 KPa depicted
in Fig. 11(a) for this calculation.
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the contact vectorsd̂sqd=sx1−x2d / ux1−x2u (the vector from a
particle to each of the particles with which it is in contact).
Consider a specific particle. We make the approximation that
when a small amplitude macroscopic strain is applied its
contacting particles move according to the affine approxima-
tion. The particle will experience an unbalanced force and an
unbalanced torque. Accordingly, it will relax to a new posi-
tion and orientation such that the net force and torque on it
become zero. So, for the specific particle we calculate its
new position and orientation. We next calculate the energy
stored within each of the contact “springs.” We do this for
each of the particles in the simulation to calculate the total
stored energy due to the applied strain and we set this equal
to the usual expression for strain energy in order to deduce
the new estimates for the bulk and shear moduli of the ag-
gregate. This procedure is detailed below.

Consider a particle, labeleda, which we take to be cen-
tered at the origin. It hasza contacts at the positions
hdsqd :q=1,zaj. Assuming that one of the contact points is
displaced by an amountusqd the increment in the intergrain
force at contactq is

Fu
sqd = KNfsd̂sqdd̂sqdd ·usqdg + aKTfsI − d̂sqdd̂sqdd ·usqdg,

s53d

whereKN andKT are given by

KN =
2mgR

1/2

1 − ng
j1/2, s54d

KT =
4mgR

1/2

2 − ng
j1/2, s55d

andj is the normal displacement which can be related to the
external pressure through the average affine approximation
[11] by

j = RF3p

2

s1 − ngd
fZ

p

mg
G2/3

. s56d

The parametera allows us to continuously investigate the
crossover behavior from perfect slipsa=0d to perfect stick
sa=1d.

FIG. 11. (Color online) Force chains in granular matter:(a) Frictional system under uniaxial compression nearfc (from Ref. [46]).
Percolating force chains are seen in this case. We apply an algorithm which looks for force chains by starting from a sphere at the top of the
system, and following the path of maximum contact force at every grain. We plot only the paths which percolate, i.e., stress paths spanning
the sample from the top to the bottom.(b) Frictionless isotropic system atp=100 KPa in three dimensions. We plot only the forces larger
than the average. Force chains seem to be tenuous and not well defined.(c) Force chains in a 2D frictional system. Force chains are clear
in this case.
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As written, the total force on the specific particle, due to
the sum of all the contact forces, is not zero:

Fu =
def

o
q

Fu
sqd Þ 0. s57d

Accordingly, that particle will move to a new equilibrium
positionX. Similarly, the net torque on the particle is unbal-
anced:

Nu =
def

o
q

dsqd 3 Fu
sqd Þ 0. s58d

Accordingly, the particle will rotate through an anglev to
a new orientation. The generalization of Eq.(53) that takes
into account the new position and orientation is

Fsqd = KNfsd̂sqdd̂sqdd · susqd − Xdg

+ aKTfsI − d̂sqdd̂sqdd · susqd − Xd − v 3 dsqdg, s59d

Now, the requirement that the particle is in equilibrium

with its contact forces,oq Fsqd =
set

0, gives three linear equa-
tions in the six unknowns,v andX. The requirement that the

total torque must vanish,oq dsqd3Fsqd =
set

0, gives the remain-
ing three. It is straightforward to solve these equations nu-
merically.

Having determined the new equilibrium position and ori-
entation, one can show that the total work done by the con-
tact forces on theath particle is simply

Wa =
1

2HKNo
q=1

za

sd̂sqd ·usqdd2

+ aKTo
q=1

za

ud̂sqd 3 usqdu2 − Fu ·X − Nu · vJ; s60d

X and v are determined as described above. In order to
calculateWa we make the affine assumption, that the dis-
placement at the contact point is simply related to the mac-
roscopic strain by Eq.(10). Since we know the exact posi-
tions of each contact vectordq from the simulations, we are
able to evaluate Eq.(60) for each particle in the ensemble.

We now evaluateoa Wa/V for a pure compression and for
a simple shear numerically and we equate the result to the
elastic energy, Eq.(6), in order to deduce the values ofK and
m.

The above procedure can only reduce the moduli relative
to those of the effective medium prediction. If, in Eq.(60) ,
we assume there is no relaxation( v=0 andX =0), and if we
replace the sum over contacts by an integral over a presumed
uniform distribution of contact directions, we reproduce the
effective medium theory, Eqs.(12) and (14).

The results of such a calculation are shown in Fig. 12,
which is to be compared to Fig. 7. The static confining pres-
sure is 100 KPa. We see that, relative to the effective me-
dium prediction, there is a small reduction of the bulk modu-
lus, which is relatively insensitive toa. There is a much
larger reduction of the shear modulus but the results of the

simulations for the shear modulus give values that are even
smaller still. Fora=0 (perfect slip) the simulations givem
=8±3 MPa, which is essentially indistinguishable from zero,
whereas from Fig. 12 we have a value of 100 KPa. We see
that relaxation effects at the single particle level, while sig-
nificant, are by no means sufficient to explain the effect. In
the fully frictional case ofa=1 there is a reduction relative
to the EMT but the simulation gives a value of 200±10 MPa.
(In Fig. 12 we have extended the calculations into the un-
physical range ofa.1 to emphasize that there is a slight
change of slope, relative to the EMT.)

We are thus lead to consider a more sophisticated theory
in which we explicitly account for collective fluctuations.
The next step in this direction is developed in Ref.[53]
where we introduce fluctuations in pairs of contacting par-
ticles. This theory is developed for the frictionless case,
where the reduction in shear modulus is most dramatic and
for which we can derive an analytic result using some fairly
weak assumptions.

VI. SUMMARY AND OUTLOOK

Where do we go from here? We clearly need new theo-
retical frameworks to describe the collective relaxation of
granular materials, especially under shear and for frictionless
packs. Below we give a short review of some of the ideas
that have been proposed recently, and how these theories are
related to our results.

A. Elastic versus fragile matter

We have seen that the impossibility of defining a strain
field which is inhomogeneous at the level of the grain is at
the root of the problems of the elastic theory: the EMT ap-
proach relies on the assumption of a uniform strain field at
all scales[8,32].

Interestingly, recent studies[18,19,45] have proposed
theories of stress transmission in granular packs which de-
scribe the internal stresses without resorting to the use of
strain variables, as in elasticity theory. These groups argue
that cohesionless grains are in a “fragile state” of marginal
rigidity or isostatic at a minimal coordination numberZc and
they are only able to support certain loads without severe

FIG. 12. First order correction to EMT allowing relaxation of
grains from the affine motion. This figure should be compared with
Fig. 7.
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rearrangements. An interesting closure relation between
stress components—for instance, the fixed principal axis
ansatz—and not between stress and strain—as in elasticity—
has been proposed to solve for the indeterminacy in the
granular system[45].

The correct type of closure relation(elastic or fragile) is
still a question of much debate[54], although there are recent
experiments on the single-particle Green function measure-
ments suggesting that the elastic framework might be the
correct approach at large scales[32,55,56].

In the case of collective relaxation dynamics, our results
show that the elastic formulation is erroneous in describing
the macroscopic shear response of granular materials. More-
over, we find that a very small shear modulus appears for
frictionless packs. This shear modulus decreases towards
zero asp→0, asf→frcp, and as the system approaches the
isostatic limit ofZ→Zc=6.

The vanishing of the shear modulus could be interpreted
as a “fragile” behavior. In the limita→0 a packing of nearly
rigid particles responds to an external isotropic load with an
elastic deformation and a finiteK, since the external pertur-
bation is compatible with the principal axes of the stress
predetermined by the preparation history of the sample. By
contrast, such a system cannot support a shear loadsm→0d
without severe particle rearrangements. Thus the granular
system supports, elastically, only perturbations compatible
with the structure of force chains and deform irreversibly
otherwise, i.e., it is in a “fragile” state.

B. Jamming and melting

Our results show that the fragile limit is approached as the
system gets closer to rcp limit, and that at rcp there is a
jamming transition between a liquidlike state and a solidlike
state with a finite modulus. The approach to the critical point
is characterized by several power-law exponents as in a
second-order phase transition. The vanishing of the shear
modulus can be understood as a melting of the system oc-
curring when the system approaches the isostatic point. This
fluid like behavior has similarities with melting transitions
found in compressed emulsions, and foams[33,34,57] near
the rcp fraction. A slow relaxation time and the increase of
the correlation length between force chains is found near rcp.
This behavior indicates that the physics of granular materials
might be closely related to other complex systems undergo-
ing jamming as proposed recently[58] such as glasses, col-
loids, foams, and emulsions.

C. Conclusions

Our MD simulations are in good agreement with the
available experimental data on the pressure dependence of
the elastic moduli of granular packings. They also serve to
clarify the deficiencies of EMT. Grain relaxation after an
infinitesimal affine strain transformation is an essential com-
ponent of the shear(but not the bulk) modulus. This relax-
ation is not taken into account in the EMT.

Clearly, there is a need for alternative theories to describe
granular packings. Recent work on stress transmission in
minimally connected networks may provide an alternative

formulation and allow a proper description of the response of
granular materials to external perturbations.
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APPENDIX A: RESISTANCE AGAINST ROLLING
AND TANGENTIAL FORCE WITH MICROSLIP

Our model of the intergrain contact is based on two as-
sumptions. First, we consider the no-slip solution of Mindlin
for the tangential force, and we consider total slip of the
contact area only when the total tangential force exceed
m fFn. However, in reality, the contact may slip over an an-
nular ring of the contact area for any finite value of the
tangential force. A general study for several loading histories
considering that microslip occurs, i.e.,uDFtu.m fDFn, was
performed by Mindlin-Deresiewicz[59] and analyzed in
more detail by Thornton and Randall[60]. They showed that
the incremental tangential force can be obtained as:DFt
=«ktsRjd1/2Ds±m fs1−«dDFn, where «=1 when microslip
does not occursuDFtu,m fDFnd and « takes different values
depending on the path loading history of loading, unloading,
and reloading[60]. We have done preliminary tests using this
more general solution of the tangential force, and found no
significant changes in comparison with the results obtained
with the no-slip solution of Mindlin. Therefore, we have per-
formed our simulations using the simpler Mindlin contact
theory. Besides, the EMT calculations are done using Hertz-
Mindlin forces, so that we want to use the same interparticle
laws for a better comparison between numerics and theory.

Second, while rotation of spherical grains is allowed in
the simulations, it is customary to model rotations without
resistance against rolling at the contacts[37]. Regarding this
approximation, it should be pointed out that some recent
studies[61] showed that resistance against rolling(modeled
as an elastic spring yielding rotational resistancekrur, where
kr is the rotational stiffness, andur is the relative rotation by
rolling) might be relevant for modeling shear bands. The
relevancy of rotational resistance to static packings has not
been determined yet, and therefore we do not include it in
our studies. It should be noted, however, that the simulations
consider resistance against shear given by the elastic tangen-
tial force of Mindlin.

APPENDIX B: DAMPING

Recently it has been shown that in order to incorporate the
dissipation law leading to inelasticity at the grain-grain con-
tact consistent with the Hertz contact law, a nonlinear force
dependency on the relative velocity of the grains in contact
has to be incorporated into the contact law[62].

This dissipative part of the normal force has been deter-
mined recently by Brilliantovet al. [62] as
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Fn
diss=

2

3
AknR

1/2j1/2j̇, sB1d

where A is a relaxation time that depends on the viscous
properties of the grain material, and it can be uniquely deter-
mined from experimental measurements of the coefficient of
restitution for spherical beads[38,63,64].

In our studies, we are not interested in the way the system
approaches the equilibrium state, but only in the final state
which is supposed to be independent on the type of damping
used. Thus we use the more efficient global damping and
linear contact damping described in Sec. II E. However, for
dynamical studies a damping term as in Eq.(B1) should be
considered as well.

APPENDIX C: MODEL OF INTERACTION BETWEEN
DROPLETS

In the case of emulsions, interdroplet forces are not given
in terms of bulk elasticity as in Hertz theory. Instead, forces
are given by the principles of interfacial mechanics without
considering shear forces[33–35,65]. For small deformations
with respect to the droplet surface area, the energy of the
applied stress is presumed to be stored in the deformation of
the surface. Hence, at the microscopic level, two spherical
droplets in contact interact with a normal repulsive force
Fn,RgA. This is the so-called Princen model[65], whereA
is the area of deformation, andg is the interfacial tension of
the droplets, andR is the geometric mean of the radii of the
undeformed droplets. Since the area of deformation is pro-
portional to overlapj, then the interdroplet interaction is
Fn,gj.

There have been more detailed numerical simulations[33]
to improve on this model and allow for anharmonicity in the
droplet response by also taking into consideration the num-
ber of contacts by which the droplet is confined. Typically
these improved models lead to a force law for small defor-
mations of the formFn~Ab, whereA is the area of deforma-
tion and b is a coordination number dependent exponent
ranging from 1(Princen model) to 3/2 (Hertz model) (see
also Ref.[40]).

APPENDIX D: TIME STEP

The time step is usually chosen much smaller than the
collision time. However, since each contact is enduring, the
collision time is extremely large and other conditions must
be used. Besides, the collision time for Hertz spheres de-
pends on the relative velocities of the particle, thus it does
not defined a fixed time scale[8].

We choose the time step to be a fraction of the time that it
takes for a sound wave to propagate on the grain. Moreover,
the quasistatic approximation used to calculate the Hertz
force is valid only when the relative velocities of the par-
ticles is smaller than the speed of sound in the grains[62].
Thus the characteristic time ist0=RÎrg/mg. Typically, one
chooses a time interval much smaller than the characteristic
time, thenDt=aRÎrg/mg with a,1. Typical values for glass
beads are:r=2600 Kg/m3, mg<29 GPa,R=0.1 mm. Then

Dt should be smaller than 10−8 s. Thus in order to perform a
simulation over one second, more than 108 MD steps are
needed, which is obviously a very intensive computation. In
this case, it is customary to increase the density or decrease
the rigidity of the particles to allow for a larger time step to
integrate the equations of motion over realistic periods of
time. If the shear modulus of the grains in decreased, then it
should be checked that the resulting stresses are several order
of magnitude smaller thanmg, thus ensuring the condition of
a nearly rigid system even thoughmg is taken smaller to
obtain larger time steps.

APPENDIX E: RESULTS IN TWO DIMENSIONS

Here we show the results for the bulk and shear modulus
as a function of the pressure for a two-dimensional pack of
spherical particles interacting via Hertz-Mindlin forces(see
Fig. 13). The 2D simulations are done with spherical Hertz-
Mindlin balls constrained to move in a plane[66]. Thus the
interparticle force is that of the 3D case. Our system is not
the same as a packing of disks in two dimensions since the
latter has a different interaction law between particles. Our
results are analogous to the three-dimensional case shown in
Fig. 5. All the conclusions regarding the moduli obtained for
three dimensions are valid in this case as well.

FIG. 13. Bulk and shear moduli for a 2D packing normalized to
p1/3, EMT, and corrected EMT taking into account the pressure
dependence ofZspd from Fig. 3(c) as well asfspd [see Eqs.(E1)
and (E2)].
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The scaling of the coordination number is similar to the
3D case:

Zspd = Zc + S p

18 KPa m
D0.28s7d

, sE1d

with Zc<4.
For the volume fraction we obtain

fspd = fc + S p

32 MPa m
D0.4s1d

sE2d

with a critical value offc<0.835, which is the rcp limit in
two dimensions. This latter exponent is in disagreement with
a mean field prediction based on the contact law, which
would imply an exponent 2/3[see discussion after Eq.(30) ].
However, we notice the large error bar of this result since we
have only five data points. We refer to Ref.[40] for a more
systematic study of this problem.
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