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Supplementary Note 1 - C. elegans connectome

We downloaded the most updated connectome of the hermaphrodite worm Caenorhab-

ditis elegans (C. elegans) from the curated database of Varshney et al. [1] which is freely

available through the Wormatlas: Altun, Z. F., Hall, D. H. (2002-2006) Wormatlas [2].

Available: http://www.wormatlas.org. Varshney et al. report a wiring diagram based

on the original data from White et al. [3] augmented to include new serial section electron

microscopy reconstructions. The connectome is composed of gap junctions which provide di-

rect electrical couplings between neurons and therefore represent undirected (bidirectional)

links between neurons. It is also composed of chemical synapses which use neurotransmitters

to transmit signals at the synaptic cleft from a neuron to a target neuron and are therefore

represented by directed links in the circuits. Here we consider the circuits of interneurons

and motor neurons involved in two locomotion functions: forward and backward locomo-

tion. The interneurons connect to motor neurons of classes A and B that control body wall

muscles [3–5]. All neurons studied here are cholinergic and excitatory (ACh) except for RIM

which uses neurotransmitter Glutamate and Tyramine and AIB which is glutamatergic (see

Supplementary Note 6). The different types of synaptic interactions respect the symmetries

found in the circuits.

Supplementary Note 2 - Network symmetry group

A network is a set of nodes V = {1, . . . , N} endowed with a connectivity structure defined

by a set of edges E between pair of nodes. An edge i→ j is interpreted as an arrow directed

from node i to node j, which are said to be connected (or adjacent) to one another. The

connectivity structure defined by the edge-set E can be put into the N×N adjacency matrix

A, which has nonzero entries Aij 6= 0 only if there is an edge i→ j ∈ E connecting nodes i

to j, and Aij = 0 otherwise. We consider a weighted adjacency matrix to take into account

the number of synaptic connections as given by [1].
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The concept of permutation is as follows. A permutation of a network, denoted as P , is

a bijective map P : V → V which pairs each node i ∈ V with exactly one node P (i) ∈ V ,

and there are no unpaired nodes (whence the term bijective map). As a consequence,

any permutation P has always a well-defined inverse, denoted as P−1. Moreover, since

permutations are orthogonal transformation, we have that P−1 = P T , where P T denotes

the matrix transpose. Two permutations P1 and P2 can be composed (or multiplied), the

result being another permutation. Composition of two permutations is written as P1 ◦ P2,

and the operation denoted by ◦ is called composition law. In the following, we omit for

simplicity the symbol ◦ and write the composition as P1 ◦ P2 ≡ P1P2.

A set of permutations G = {P1, . . . , Pn} is said to form a permutation group under

composition of its elements if it obeys the group axioms [6] listed below. Definition of

Permutation Group:

1. existence of the identity I ∈ G, defined as I(i) = i for all i.

2. associativity of the composition law : Pi(PjPk) = (PiPj)Pk;

3. closure of the composition law: PiPj ∈ G;

4. existence of the inverse P−1i for all Pi ∈ G, defined by P−1i Pi = PiP
−1
i = I.

In a network of size N there are N ! different ways to permute its nodes. The set of these

N ! permutations obeys the group axioms listed above, so it forms a group. However, this

is not the symmetry group of the network, because not all permutations are, in general,

symmetries. To qualify as a network symmetry, P must preserve the connectivity structure,

i.e., the network adjacency matrix A [6–9]. In other words, the permuted adjacency matrix

PAP−1 must be identical to the original one: A = PAP−1 if P is a permutation symmetry.

Invariance of A under P is formally equivalent to the requirement that P commutes with

A, so we have the formal definition of symmetry:

[P,A] ≡ PA− AP = 0 ⇐⇒ P is a permutation symmetry . (1)

Permutations which obey Eq. (1) are formally called network automorphisms [6]. In short,

network symmetry and automorphism are synonyms of one another. For example, consider

the circuit shown in Supplementary Fig. 1a, and the permutation P acting on it represented
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by the matrix

P =

AVBL

AVBR

RIBL

RIBR


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , (2)

which swaps AVBL with RIBL, and AVBR with RIBR. This permutation is an automor-

phism, because the circuits before and after the action of P are exactly the same, as seen

in Supplementary Fig. 1a. Moreover, it is easy to check that [P,A] = 0. Next, consider the

action of the permutation Q shown in Supplementary Fig. 1b, given by the matrix

Q =

AVBL

AVBR

RIBL

RIBR


0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

 , (3)

which exchanges AVBL with RIBR and leaves the other neurons fixed. Permutation Q

is not an automorphism, because it does not preserve the connectivity between neurons.

Indeed, before the action of Q, AVBL and AVBR are connected by a link with a weight=3,

while after they are connected by a link with a weight=1. Thus, Q is not a symmetry,

because it alters the connectivity structure of the circuit by changing the weights on the

links. Consistently, we also have that [Q,A] 6= 0.

The set of all network automorphisms obeys all group axioms, so it forms a group.

This group, denoted as Gsym(A), is called the permutation symmetry group of the

network [6], and formally defined as:

Gsym(A) = {P : [P,A] = 0} . (4)

An algorithm to find perfect automorphisms of a given network is call Nauty, and it is given

in Ref. [10], which is based on the well-known problem of testing isomorphism of graphs.

Supplementary Note 3 - Pseudosymmetries

A 25% variation across animals has been found in the connectivity of connectomes [1, 11].

For this reason, exact symmetries (= automorphisms) of the connectome are a simplification

and an idealization. However, they should not be regarded as a falsification of symmetry
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Supplementary Figure 1. Symmetric and non-symmetric permutation. (a) Permutation

P Eq. (2) is a symmetry of the network preserving the connectivity of neurons (automorphism),

and commutes with A: [P,A] = 0. (b) Permutation Q defined in Eq. (3) is not a symmetry of

the network, because it changes the network connectivity by altering the weights of the links, so it

does not commute with A: [Q,A] = 0.

principles, but rather as an intrinsic property of biological diversity. Symmetry principles, in

biology, are invariably idealized and approximate: living systems do have to be sufficiently

non-symmetric to evolve and diversify. Were it not so, the nature of exact symmetries would

forbid any change in organisms’ structure and functions. Furthermore, the animal displays

a range of behaviors that are plastic and can change through learning and memory [12].

Unlike automorphisms, which are canonically defined by Eq. (1), the definition of pseu-

dosymmetry depends on an additional parameter, a small number ε > 0, which, for our

purposes, represents the 25% variation existing across animals.

A permutation Pε is called a pseudosymmetry if the commutator [Pε, A] is non-zero but

small

||[Pε, A]|| = ε (5)

that is, Pε approximates an exact symmetry in the limit ε→ 0.

The norm of the commutator in Eq. (5), defined as

∆(Pε) = ||[Pε, A]|| ≡
∑
i≥j

|Aij − AP (i)P (j)| , (6)
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Supplementary Figure 2. Dihedral symmetry group D8 of the forward gap-junction

circuit (interneurons only). The automorphisms r and t are the generators of this group, as

shown. The structure of this group is then converted into the system of imprimitivity when this

interneuron circuit is incorporated into the whole connectome. This is a general property of all

functional circuits in the connectome, to be elaborated in a follow up paper.

counts the number of links where Pε and A do not commute. The ideal limit of classical

symmetry corresponds to ∆(Pε)→ 0, and we recover exact automorphisms. In general, the

quantity ∆(Pε) → 0 in Eq. (6) quantifies the deviation of Pε from an ideal automorphism.

Thus, we are lead naturally to the following definition of pseudosymmetry.

Definition of network pseudosymmetry– A permutation Pε is called pseudosymme-

try of the network if its deviation ∆(Pε) from ideal automorphism is smaller than a given

indetermination constant ε, i.e., ∆(Pε) < εM , where M is the total number of links includ-

ing the weights. In other words, we require pseudosymmetries to preserve at least a fraction

(1− ε) of the total number of links.
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Algorithm to find pseudosymmetries

In the present work, we choose the indetermination constant to be smaller than ε < 0.25,

which represents the 25% variation in the connectivity of connectomes across animals [1, 3,

11, 13], as a condition for the permutation to be considered a pseudosymmetry. We then

obtain the set of pseudosymmetries shown in the real circuits in the main text. Finding

pseudosymmetries is relatively simple when the size of the network is small, because they

can be determined by an exhaustive search as those permutations satisfying ∆(Pε) < Mε.

To find the pseudosymmetries we compute for each permutation P the norm ∆(Pε) given by

Eq. (6), and we select only those such that ∆(Pε) < Mε. All pseudosymmetries found in the

locomotion circuits represents transformation with indetermination constant ε below 25%.

The list of the indetermination constants of all subgroups appears in Table I. We notice that

pseudosymmetries of locomotion circuits are, in general, highly degenerate, and their number

increases as a function of ε. Due to the fact that ε is relatively small, these real circuits

can then be easily symmetrized to obtain the circuits with ideal symmetries with ε = 0.

This is so, since the pseudosymmetries are relatively close to a perfectly symmetric circuit.

The provided ideal circuits are examples of idealized symmetrical circuit and represents the

closest ideal structure to the real one and at the same time respect the same symmetries

as the pseudosymmetries of the real circuit. The real circuits (and only them) and their

pseudo-symmetries remain the actual circuits to be studied. When the size N of the network

is larger than N > 20, finding pseudosymmetries by using an exhaustive search becomes

computationally impossible. In this case, pseudosymmetries should be determined as the

solutions of a constrained quadratic assignment problem, to be elaborated and described in

detail in a follow up paper.

Supplementary Note 4 - Factorization of the symmetry group

Factorization of the symmetry group into simple and normal subgroups is the fundamental

tool for understanding the main results of this work. Descending to subgroups gives us

useful information about the fine structure of the connectome, and eventually will allow us

to identify its basic building blocks. Next, we explain the notion of subgroups and then

the procedure to find the building blocks of the connectome through the factorization of its

symmetry group. All definitions are standard in the group theory literature and appear in
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Ref. [6].

Definition of Subgroup– A subset H of permutations selected from a group G is said

to be a subgroup of G if the subset H forms itself a group (under the same composition law

that was used in G). The concept of subgroup is fundamental in mathematics and physics

since it gives the structure of fundamental forces and particles [14].

Definition of Simple Subgroup– A simple subgroup is a nontrivial group whose only

subgroups are the trivial group and the group itself. A group that is not simple can be

broken into two smaller groups, a normal subgroup and the quotient group, and the process

can be repeated, as explained next.

Definition of Normal Subgroup– Among all subgroups of a symmetry group, the

normal subgroups, Fig. 1e, are particularly significant in this work, since they allow us to

define the building blocks of the connectome. A subgroup H is said to be normal in a group

G if and only if H commutes with every element g ∈ G, i.e., [g,H] = gH−Hg = 0 (notice

that the requirement is that H commutes with every g as a whole subgroup, not element by

element).

More precisely, consider a group G and a subgroup H ≤ G. For a given element g ∈ G

we can form the set {gh : h ∈ H}, which is called the left coset of H in G. Thus we can

use H to generate the collection of non-overlapping cosets H, g1H, g2H, .... Note that while

H is a subgroup, the cosets are, in general, simply sets. The crux of the matter is that if

the cosets form themselves a group, then H is called a normal subgroup. Viceversa, if H

is a normal subgroup, then the cosets do form a group, called the coset group. Next we

explain which properties H must have in order to be a normal subgroup, or equivalently, for

the cosets to form a group. Let H be a subgroup dividing G in Nc non-overlapping cosets.

Since G may be, in general, a non-abelian group, the left cosets may differ from right cosets.

To be definite, in the following we consider only left cosets. Each left coset is of the form

gH for some g ∈ G. Let us consider two cosets g1H and g2H. Since H is a subgroup, it

must contain the identity element e, i.e. e ∈ H. Therefore g1e = g1 is in the coset g1H.

Analogously, g2e = g2 is in the coset g2H. Now, if cosets behave like a group, then the

product g1g2 must be in the product of two cosets, that is g1g2 ∈ (g1H)(g2H). Since g1g2 is

also in the coset g1g2H, then the product of any element in the first coset with any element

in the second coset should be in the coset g1g2H, i.e., (g1H)(g2H) = g1g2H. To see when

this happens, consider an arbitrary element in the first coset g1H and call it g1h1, and an
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element in the second coset g2h2. Multiplying these two elements we get g1h1g2h2. If this

is in the coset g1g2H, then this product must be equal to g1g2h3 for some h3. Starting from

this equation we can write:

g1h1g2h2 = g1g2h3

h1g2h2 = g2h3

g−12 h1g2h2 = h3

g−12 h1g2 = h3h
−1
2 .

(7)

Since H is a subgroup, the right hand side of Eq. (7) is in H, i.e. h3h
−1
2 ∈ H. As a

consequence, also g−12 h1g2 is an element of H, so we have in general that g−12 Hg2 ∈ H. In a

similar way, one can prove that H ∈ g−12 Hg2, and thus conclude that

g−12 Hg2 = H → [g2,H] = 0 . (8)

To recap, we just proved that if H ≤ G is a subgroup and the cosets form a group, then

it must hold true that [g,H] = 0 for any g ∈ G. In a similar way it can be proven that the

converse is also true, that is, if [g,H] = 0 then the cosets form a group. If this happens,

then H is called a normal subgroup, denoted as H E G, and the coset group is called

quotient subgroup, denoted as G/H. Every group G has at least two normal subgroups,

which are the identity {e} and the group itself G. If these are the only normal subgroups

then G is called a simple group. In other words, a simple group does not have any quotient

subgroups, and for this reason simple groups represent the building blocks of other groups.

Normal subgroups (and only normal subgroups) can be used to decompose the symmetry

group as a direct product, as we discuss next.

Definition of Direct Product Factorization– To explain the factorization of a group

as a direct product of normal subgroups, it is useful to introduce the following notation. Let

us consider a permutation group G and suppose that K is a subset of G. Then, we define

the support of K by:

supp(K) = {i ∈ V | P (i) 6= i for at least one P ∈ K} . (9)

Then, suppose that two subsets K and H of a group G have non-overlapping supports, that

is Supp(K)∩Supp(H) = ∅, then all elements in K commute with those in H, i.e., [K,H] = 0.

Assume now that a group G can be partitioned into a collection of subsets {H1,H2,×,Hn}

such that for any pair Hi and Hj, i 6= j, Supp(Hi)∩ Supp(Hj) = ∅. Also, assume that each
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subset Hi cannot be further partitioned into smaller subsets with non-intersecting supports.

The important point is that the subsets Hi found in this way are, by simple construction,

the uniquely defined normal subgroups that factorize G into a direct product as:

G = H1 ×H2 × . . .Hn . (10)

More concretely, take the sector of blue motor neurons in Fig. 4a (VB3, VB4, VB5, VB10,

VB11, DB2, DB4, DB6, DB7, DB8) and its associated subgroup S10 and the subgroup Tch
F

which acts on the sector of touch neurons colored green PVCL and PVCR. If we apply any

permutation of S10 to the blue motor neurons, then the neurons PVCL and PVCR in the

other sector are not affected. For instance, a permutation of VB3 and VB4 is a symmetry

that does not affect for instance the touch sector of interneuron PVCL and PVCR. This

factorization is because VB3 and VB4 are both connected to PVCL and PVCR, and this

is a strong constraint on the connections. Imagine now that we loss two of the links and

VB3 connects only to PVCL and VB4 only to PVCR. The resulting circuit would still be

symmetric since we can still permute VB3 with VB4. But to keep the symmetry of the

whole network, this permutation now triggers the permutation of PVCL and PVCR. Thus,

VB3 and VB4 would belong to the touch sector together PVCL and PVCR. We see how

the subgroup structure imposes hard constraints in the network connectivity. The fact that

the connectivity of the network is precisely structured to create subgroups which can be

factorized is an interesting result since not all groups possess this property. Furthermore

the factors are aligned with different broad classification of functions. This is an indication

that these subgroups have biological significance. Thus, the subgroup structure suggests the

segregation of neurons in the network according to function yet allowing integration since

the neurons are connected in the same circuit.

In Supplementary Note 5 we will show that both forward and backward circuits, either

of gap-junctions or chemical synapses, have symmetry groups which factorize as a direct

product of normal subgroups that correspond to specific broad functional categories from

the Wormatlas.
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Supplementary Note 5 - Symmetry group of C. elegans locomotion circuit

Forward gap-junction circuit

The real circuit with the weights of the synapses is shown in Supplementary Fig. 3. The

corresponding symmetry group is factorized as a direct product of 6 normal subgroups:

Fgap = [C2 ×C2]× [S5 ×D1 ×C2 ×C2] . (11)

The pair of subgroups [C2×C2] acts on the set of four interneurons (AVBL, AVBR, RIBL,

RIBR), but does not move any motor neuron. For this reason, we put them together to

form the composite subgroup CFgap , which we call command subgroup of the forward

gap-junction circuit and define as:

CFgap = C2 ×C2 . (12)

Similarly, the product [S5 ×D1 ×C2 ×C2] in Eq. (11) acts only on the motor neurons

VB and DB, but not on the interneurons. Therefore, we put them together to form the

composite MFgap , and we call it the motor subgroup of the forward gap-junction

circuit, defined as

MFgap = [S5 ×D1 ×C2 ×C2] . (13)

The formal decomposition of the circuit into the functional categories is:

Fgap = CFgap ×MFgap . (14)

Backward gap-junction circuit

The real circuit is shown in Supplementary Fig. 4 with the weighted links. The symmetry

group of the backward circuit of gap-junctions breaks into a direct product of command and

motor normal subgroups as:

Bgap = (C2 ×C2 ×C2 ×C2)× (S12 ×D6 ×C2) . (15)

where the command subgroup is

CBgap = C2 ×C2 ×D1 , (16)
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Supplementary Figure 3. Real forward locomotion gap-junction circuit. This circuit

comprises 22 neurons divided in 2 sectors: the command-sector including the 4 interneurons (AVBL,

AVBR, RIBL, RIBR); and the motor-sector including the remaining motor neurons.

acts on the command sector (AVAL, AVAR, AVEL, AVER, RIML, RIMR, AIBL, AIBR),

and fix the motor sector, while the motor subgroup

MBgap = S12 ×D6 ×C2, (17)

acts only on motor neurons DA and VA and leaves the interneurons fixed. The formal

decomposition of the circuit is:

Bgap = CBgap ×MBgap . (18)
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Supplementary Figure 4. Real backward gap-junction circuit. This circuit comprises 29

neurons connected by gap-junctions. These neurons form 2 disjoint sectors: the command-sector

including 8 interneurons (AVAL, AVAR, RIML, RIMR, AIBL, AIBR, AVEL, AVER); and the

motor sector formed by the remaining 21 motor neurons.

Forward chemical synapse circuit

We construct the forward circuit of chemical synapses using the same neurons of the for-

ward gap-junction circuit discussed in Supplementary Note 5. In addition, we consider also

the two neurons PVCL and PVCR, since they are connected to the other ones via chemical

synapses (but not via gap-junctions). The resulting real circuit with the weighted links

is displayed in Supplementary Fig. 5, and its pseudosymmetries are listed in Table I. We

consider the different chemical synaptic connections according to the different neurotrans-

mitters into excitatory and inhibitory. All neurons are cholinergic and excitatory (ACh)

except for RIM which uses neurotransmitter Glutamate and Tyramine and AIB which is

glutamatergic, as shown in Supplementary Table II. These different types of synaptic con-
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nections do not affect the symmetries of the circuits and therefore we avoid to plot the type

of neurotransmitter in the links of the chemical synapses circuits for clarity in all chemical

circuits.

The corresponding (pseudo)symmetry group factorizes as the direct product of five normal

subgroups in the following way:

Fch = (C2)× (D1)× (S10 ×D1) , (19)

The first subgroup C2 in Eq. (19) acts only on the pair of neurons (PVCL, PVCR) and

leaves the rest fixed. For this reason, we name it touch subgroup of forward chemical

synapse circuit, nd define as:

TFch
= C2 , touch subgroup. (20)

The subgroup D1 acts only on the four interneurons, thus forming a composite subgroup

named command subgroup of the forward chemical synapse circuit, which is defined

as:

CFch
= D1 , command subgroup. (21)

Lastly, the pair of subgroups S10 × D1 acts only on the motor neurons of this circuit,

thus forming the motor subgroup of the forward chemical synapse circuit, which is

defined by:

MFch
= [S10 ×D1] , motor subgroup. (22)

The decomposition of this circuit is:

Fch = TFch
× CFch

×MFch
. (23)

For simplicity we plot only the interneurons that connect to the motor neurons. Full

circuit in Supplementary Fig. 6. All neurotransmitters are cholinergic and excitatory (ACh)

except for RIM which uses neurotransmitter Glutamate and Tyramine and AIB which is

glutamatergic (see Supplementary Note 6). These different types of synaptic interactions

respect the symmetries of the circuits, see Supplementary Note 5.

Backward chemical synapse circuit

Since this circuit has a quite dense connectivity structure, for easier visualization, we

plot it by separating two parts. Supplementary Fig. 6a shows the real circuit involved in the
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Supplementary Figure 5. Real forward chemical synapse circuit. This circuit comprises

20 neurons divided in 3 sectors: the touch-sector including the pair (PVCL, PVCR); the command-

sector including the 4 interneurons (AVBL, AVBR, RIBL, RIBR); and the motor-sector including

the remaining neurons. All neurons in this circuit are cholinergic.

touch-command subgroups. We then add the motor neurons in the class A and replot the

interneurons involved in backward locomotion but only those that connect with the motor

neurons in Supplementary Fig. 6b. These are the neurons AVA, AVE and AVD. Interneurons

AIB and RIM in the command subgroup are not included for clarity of visualization because

they do not contribute to the connections between the different sectors. We then obtain

the real circuit displayed in Supplementary Fig. 6b involved in the touch-command-motor

subgroups.

The symmetry group of the backward chemical synapse circuit shown in Fig. 4c is

factorized as:

Bch = [C2]× [C2 ×C2]× [S5 × S4 × S3 ×C2 ×D1] . (24)

The touch sensitivity subgroup is composed of neurons AVD, the command interneuron
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Supplementary Figure 6. Real backward chemical synapse circuit. a. We plot separately

the interneurons for clarity. This part of the circuit comprises 10 neurons and the chemical synapse

between them. These neurons form 2 disjoint sectors: the touch-sector including the pair (AVDL,

AVDR); and the command-sector including the other 8 interneurons (AVAL, AVAR, RIML, RIMR,

AIBL, AIBR, AVEL, AVER). All neurons in this circuit are cholinergic and excitatory (ACh),

except for RIM and AIB which are inhibitory: RIM uses neurotransmitter Glutamate and Tyramine

and AIB is glutamatergic. The inhibitory nature of their synaptic connections is shown graphically

by T-headed arrows (a, inhibitory links), as opposed to excitatory synapses represented by ordinary

arrows (→, excitatory links). The different types of synapses do not affect the pseudosymmetries

of this circuit. b. We add the motor neurons to the circuit and plot only the interneurons that

connect to the motor sector, for clarity. All neurons in this circuit are cholinergic.

subgroup of neurons AVA, AVE, AIB and RIM, and the motor subgroup consists of motor

neurons VA and DA. The decomposition of this circuit is, respectively:

Bch = TBch
× CBch

×MBch
. (25)
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Supplementary Note 6 - Wormatlas functional categories on neurons

Broad functional categories of neurons are provided at the Wormatlas: http://www.

wormatlas.org/hermaphrodite/nervous/Neuroframeset.html, Chapter 2.2 [2]. A clas-

sification for every neuron into four broad neuron categories is provided as follows: (1)

’motor neurons, which make synaptic contacts onto muscle cells’, (2) ’sensory neurons’,

(3) ’interneurons, which receive incoming synapses from and send outgoing synapses onto

other neurons’, and (4) polymodal neurons, which perform more than one of these functional

modalities’.

The Wormatlas classifies most neurons (some of them unknown) in further functional

categories as well as provides the neurotransmitters. We reproduce the information from

the Wormatlas used in the main text in Supplementary Table I and Supplementary Table II.

Forward circuit

Neuron Functional Category Explanation Neurotransmitter

AVB interneuron driver cell for forward locomotion ACh

RIB interneuron/motor second layer interneuron, ACh

polymodal process of integration of information, locomotion

PVC interneuron command interneuron for forward locomotion, ACh

modulates response to harsh touch to tail

VB motor (sensory) locomotion (ventral), proprioception ACh

DB motor forward locomotion (dorsal), proprioception ACh

Supplementary Table I. Functional categories of the neurons in the forward circuit according to

the Wormatlas.

Supplementary Note 7 - Blocks of imprimitivity

The correspondence of network building blocks and simple subgroups provides a rigorous

theoretical characterization of the network connectivity structure and a natural interpreta-

tion of its broad functional categories according to the Wormatlas. However, a more accurate

description of functionality should take into account also the splitting of these building blocks

into finer topological structures. The fine structure corrections to the building blocks can be
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Backward circuit

Neuron Function category Explanation Neurotransmitter

AVA interneuron command interneuron, locomotion, ACh

driver cell for backward locomotion

AVE interneuron command interneuron, ACh

drive backward movement

RIM interneuron second layer interneuron, Glu, Tyr

(motor) process of integration of information, locomotion

first layer amphid interneuron,

AIB interneuron locomotion, food and odor-evoked behavior, Glu

lifespan, starvation response

AVD interneuron command interneuron, ACh

modulator for backward locomotion induced by head-touch

VA motor locomotion ACh

DA motor backward locomotion ACh

Supplementary Table II. Functional categories of the neurons in the backward circuit according

to the Wormatlas.

obtained systematically through the concept of system of imprimitivity of a symmetry

group G. All definitions appear in [6].

To define a system of imprimitivity we need first the notions of transitivity and blocks.

A group G is said to be transitive on the set of nodes V if for every pair of nodes i, j ∈ V

there exist P ∈ G such that P (i) = j (in other words, G has only one orbit). A group

which is not transitive is called intransitive. A block is defined as a non-empty subset B of

nodes such that for all permutations P ∈ G we have that:

• either P fixes B: P (B) = B;

• or P moves B completely: P (B) ∩ B = ∅.

If B = {i} or B = {V }, then B is called a trivial block. Any other block is nontrivial. If G

has a nontrivial block then it is called imprimitive, otherwise is called primitive.
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The importance of blocks rests on the following fact. If B is a block for G, then P (B)

is also a block for every P ∈ G, and is called a conjugate block of B. Suppose that G

is transitive on the set of nodes V and define Σ = {P (B) | P ∈ G} as set of all blocks

conjugate to B. Then the sets in Σ form a partition of the set of nodes V , and each element

of Σ is a block for G. We call Σ a system of imprimitivity for the (symmetry) group G

[6].

In the text we have shown that the action of G on the system of imprimitivity Σ gives

important information about the functionality of the neural circuits, provided B is not a

trivial block.

Supplementary Note 8 - Circulant Matrices and Fast Fourier Transform

In this section we discuss the relationship between circulant matrices and discrete Fourier

analysis (see Fig. 1g). In particular, we show that the eigenvalues of circulant matrices can

be computed extremely fast through a routine of just O(N logN) operations, called Fast

Fourier Transform (FFT).

We start the discussion by recalling that a circulant matrix A = circ(a0, a1, . . . , aN−1)

can always be written as a polynomial of the permutation matrix P = circ(0, 1, 0, . . . , 0) of

degree at most N − 1, that is:

A = a0I + a1P + a2P
2 + ...+ aN−1P

N−1 . (26)

For instance, the low-pass filter:

L = circ(1, 1) =

1 1

1 1

 , (27)

can be written as L = I + P . Next, we introduce the matrix F with entries Fab defined as

follows:

Fab =
1√
N

e
2πi
N

ab . (28)

Matrix F is a unitary matrix (F † = F−1) which represents the kernel of the discrete Fourier

transform (DFT). Specifically, given a vector x, its DFT, denoted as x̃, is the vector defined

as: x̃a =
∑

b Fabvb. The crucial point is that the permutation matrix P = circ(0, 1, 0, . . . , 0)

is diagonalized by F , that is P = FΛF−1. This can be easily seen by calculating explicitly
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the product F−1PF , which reads:

(F−1PF )ab =
1

N

N−1∑
k=0

N−1∑
m=0

e−
2πi
N

akPkme
2πi
N

mb =
e

2πi
N

b

N

N−1∑
k=0

e
2πi
N

k(b−a) = δab e
2πi
N

b . (29)

As a consequence of Eq. (29), any circulant matrix A is also diagonalized by F as

(F−1AF )ab =
N−1∑
n=0

an(F−1P nF )ab = δab

N−1∑
n=0

ane
2πi
N

nb , (30)

so we can write down the eigenvalues {λa} of A as

λa =
N−1∑
n=0

ane
2πi
N

na , a = 0, . . . , N − 1 . (31)

Eigenvalues {λa} can be computed efficiently using the FFT of the vector ~α ≡ 1√
N

(a0, aN−1, ..., a1)
T .

To see this, we rewrite λa as

λa =
∑
b

(F−1AF )ab =
∑
bk

(F−1A)akFkb =
√
N

∑
k

(F−1A)akδk0

=
√
N(F−1A)a0 =

1√
N

∑
b

FabAb0 ,
(32)

where we used the fact that F satisfies the following sum rules:

N−1∑
b=0

Fab =
√
Nδa0 ,

N−1∑
b=0

F−1ab Fb0 =
1

N
δa0 .

(33)

Using the vectors ~α ≡ 1√
N

(a0, aN−1, aN−2, ..., a1)
T and ~λ ≡ (λ0, λ1, ..., λN−1)

T , we can write

Eq (32) in the simple form

F~α = ~λ , (34)

which shows that the eigenvalues {λa} of A are the components of the DTF of vector ~α.

Since F~α can be evaluated in O(N logN) operations using a FFT, then the computational

effort for diagonalizing a circulant matrix A requires O(N logN) operations, too. Thus, we

can interpret the functionality of the circulant matrix as a fast way (almost linear in the

number of nodes) to perform a Fourier Transform for processing of information.
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